PHYS 434 Optics

Lecture 18: Diffraction through Slits

Reading: 10.1
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Summary Lecture 17

e Coherent beams can be created by
of a single wave into different components.
Accounting for different path lengths and phaseshifts,
the can be determined.

e The most common set-up ( )
uses two mirrors and a beamsplitter. Because of its
sensitivity, it is a very precise measuring device.

e In many cases, we need to account for interference
of a large number of beams. The resulting intensity
is described by
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Summary Lecture 18

e Shadow features that go beyond ray optics are called
diffraction. While not physically distinct from inter-
ference, both are used in distinct situations.

e The Huygens-Fresnel principle provides an intuitive
way to study diffraction: secondary wavelets of diffe-
rent amplitudes and phases interfer beyond obstacle.

e We distinguish Fresnel (near-field) and Fraunhofer
(tar-field) diffraction. To understand the resultant
pattern consider behaviour of coherent oscillators.
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PHYS 434 Optics

Lecture 19: Fraunhofer Diffraction

Reading: 10.2
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Summary Lecture 18

e Shadow features that go beyond ray optics are called
diffraction. While not physically distinct from inter-
ference, both are used in distinct situations.

e The Huygens-Fresnel principle provides an intuitive
way to study diffraction: secondary wavelets of diffe-
rent amplitudes and phases interfere beyond obstacle.

e We distinguish Fresnel (near-field) and Fraunhofer
(tar-field) diffraction. To understand the resultant
pattern consider behaviour of coherent oscillators.
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Summary Lecture 19

In the far-field (Fraunhofer) regime, the emission
of a line source can be represented by a point source.

The characteristic single-slit diffraction pattern is
controlled by a function proportional to sinc” 2, which
can be understood in terms of wavelets or phasors.

For multi-slit configurations, we obtain a diffraction
pattern that is given as an interference term, modu-
lated by the single-slit diffraction pattern.

The concept is important for grating spectroscopy.
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PHYS 434 Optics

Lecture 20: Fresnel Diffraction

Reading: 10.2.4, 10.3




Summary Lecture 19

In the far-field (Fraunhofer) regime, the emission
of a line source can be represented by a point source.

The characteristic single-slit diffraction pattern is
controlled by a function proportional to sinc” 2, which
can be understood in terms of wavelets or phasors.

For multi-slit configurations, we obtain a diffraction
pattern that is given as an interference term, modu-
lated by the single-slit diffraction pattern.

The concept is important for grating spectroscopy.
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Circular aperture
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Summary Lecture 20

In the near-field regime, the approximations used for
Fraunhofer diffraction are no longer applicable.

To bypass the shortcomings of the HF principle, we
account for an obliquity factor as well as adjusting
the strength of the sources in the aperture.

The intensity for a rectangular aperture can be ex-
pressed in terms of Fresnel integrals and illustrated
on the Cornu spiral.

To describe the intensity of a circular aperture, we
invoke the interference of different Fresnel zones.
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PHYS 434 Optics

Lecture 21: Fourier Transforms / Optics

Reading: 11.1 - 11.3
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Summary Lecture 20

In the near-field regime, the approximations used for
Fraunhofer diffraction are no longer applicable.

To bypass the shortcomings of the HF principle, we
account for an obliquity factor as well as adjusting
the strength of the sources in the aperture.

The intensity for a rectangular aperture can be ex-
pressed in terms of Fresnel integrals and illustrated
on the Cornu spiral.

To describe the intensity of a circular aperture, we
invoke the interference of different Fresnel zones.
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Convolution theorem
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Summary Lecture 21

Fourier theory plays an important role in Optics.

Field distribution in the Fraunhofer diffraction pat-
tern is Fourier transform of the aperture function
(each point in the image plane is a spatial frequency).

A lens acts as a Fourier analyser.

Diffraction of an array of identical apertures is pattern
of one multiplied by that of individual point sources.

The image formed by any optical system is the input
intensity convolved with its point-spread function.
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Lens Transformations
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Summary Lecture 24

The are very-well described by solu-
tions to the

The resulting beams have a Gaussian transverse in-
tensity profile and are thus called
characterised by their waist and Rayleigh range.

)

A affects the Gaussian beam by adding a phase,
i.e. changing the . It is possible
to recover standard Geometric Optics expressions.

There is a family of that
can be excited within cavities (different nodes).



PHYS 434 Optics

Lecture 25: Holography

Reading: 13.3
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Summary Lecture 24

The are very-well described by solu-
tions to the

The resulting beams have a Gaussian transverse in-
tensity profile and are thus called
characterised by their waist and Rayleigh range.

)

A affects the Gaussian beam by adding a phase,
i.e. changing the . It is possible
to recover standard Geometric Optics expressions.

There is a family of that
can be excited within cavities (different nodes).
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Summary Lecture 25

When taking a , we only store information
about the of the light field but not its phase.

To do so, we can combine the concepts of
in a two-step process:
of an object on a film (interference fringes) and
the image by illumination (diffraction).

By recording phase and amplitude, we can encode
all information of the original light field and recover
a , which has lots of applications.
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