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NEUTRON STAR INTERIORS
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and influenced by the 

(unknown) equation of state.
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SUPERFLUID COMPONENTS

Although neutron stars are hot 
compared to laboratory 

experiments, they are very cold 
in terms of their densities.

fermionic nucleons can form Cooper pairssuperfluids 
can flow 
without 
friction
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to lab SCs
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Large numbers of particles condense into the 
same quantum state, which is characteristic 

for macroscopic quantum phenomena.



SUPERFLUID HELIUM
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helium II behaviour explained by two-fluid model 

inviscid 
compo- 
nent: SF  
features

normal component: viscous properties & heat transport

At low temperatures, 
helium-4 does not solidify 

but enters a new fluid phase.
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QUANTUM VORTICES

vSF= ћ/mc∇φ
dictates

ω = ∇ х vSF= 0
(superflow is 
irrotational)SFs rotate 

by forming

quantised 

vortices
each vortex 

carries a 

quantum of 

circulation
к = h/mc

Superfluids are characterised by a QM 
wave function Ψ=Ψ0eiφ, which satisfies 

the Schrödinger equation.
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HVBK EQUATIONS

Based on the two-fluid picture, Hall, 
Vinen, Bekarevich and Khalatnikov 

developed a vortex-averaged, 
hydrodynamic description of SF.

HVBK-type equations also apply to NSs: superfluid neutrons plus charged particle conglomerate
vortices 
enter via 
tension & 

mutual 
friction
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MUTUAL FRICTION

The inviscid fluid component 
experiences dissipation due to 

interactions between the vortices 
and the normal component.
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two 

coefficients 

determine 

dissipation 

strength

In helium, coefficients 
can be directly mea- 
sured. In NSs, they 

must be calculated.



SPHERICAL NEUTRON STAR SHELL

credit: see Fig. 1 in Peralta et al. (2005) 

Example: Peralta et al. (2005) 
evolved the NS HVBK equations 

for a rotating, spherical shell.

evolution 

following 

steady 

differential 

rotation

model 
outer NS 

core 
dynamics

Streamlines for normal (left) and superfluid (right):

cell-like structures in both fluids
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RADIO PULSAR TIMING

Rotation 
axis

Magnetic 
field axis

Because rotation and 
magnetic field axes are 

misaligned, NSs emit radio 
radiation like a lighthouse.

9graber@ice.csic.es
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time pulsar 

radiation to 

learn about 

their 

interiors



PULSAR GLITCHES
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MANIFESTATION OF SUPERFLUIDITY

Spin-up glitches are 
naturally explained in a 
two-component model.
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manifestation 

of quantum 
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LABORATORY HELIUM GLITCHES

In the 1970s, Tsakadze and 
Tsakadze performed a systematic 

analysis of Helium II spin-up.

credit: Tsakadze & Tsakadze (1980) credit: Tsakadze 
& Tsakadze (1980) 

with their very basic set-up they might have detected one (!) glitch 
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NEW 3D SPIN-UP SIMULATIONS

Take a new look at numerically 
modelling glitch behaviour in 3D:

 Solve HVBK equations with Dedalus.
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TAKE-HOME POINTS

graber@ice.csic.es

NSs 

contain at 

least 3 SF 

compo-

nents

vortices 
affect 

large-scale 
dynamics via 
tension and 

mutual 
friction

like helium 
II, neutron 
SFs rotate 
by forming 

vortices

pulsar 
glitches are a 
macroscopic 

manifestation 
of quantum 

vortices

by contras- 

ting models 

with data, we 

can constrain 

physics of the 

hidden 

interior


