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Magnetic Fields in Neutron Stars

@ Inferred magnetic dipole field strengths
reach up to 10'®> G for magnetars. Such
fields strongly influence the dynamics.

@ Long-term field evolution could explain
o observed field changes in pulsars
(Narayan & Ostriker, 1990)
o high activity of magnetars
(Thompson & Duncan, 1995)
Figure 1: Artistic impression of a neutron e neutron star Ametamorphogs,

star and its magnetic dipole field. (Viganb et al 2013)
-

@ Mechanisms causing magnetic field evolution are poorly understood.
(Goldreich & Reisenegger, 1992; Glampedakis, Jones & Samuelsson, 2011, e.g.)

What happens if we take core superconductivity into account?
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Standard Resistive MHD

@ In a proton-electron plasma, the frictional coupling force is given by

Fei — NefMe (vé - VI’;) = _me J"7 (1)
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with the coupling timescale 7. and macroscopic current Ji.

@ The electron Euler equation provides a generalised Ohm's law for the
macroscopic electric field. Together with Faraday’'s and Ampére’s laws
this leads to the resistive MHD induction equation,
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= Flux freezing, Ohmic decay and conservative Hall evolution with

4moel? 4meppL?
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Quantum Condensates — Type-ll Superconductivity

@ Equilibrium stars with 10° — 108 K are cold enough to contain superfluid
neutrons and superconducting protons. The macroscopic quantum states
influence the stars’ dynamics.

@ Type of superconductivity depends on the characteristic lengthscales.
Estimates predict a type-ll state (Baym, Pethick & Pines, 1969; Mendell, 1991, e.g.)
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@ Flux is allowed to enter fluid in form of
quantised fluxtubes. They are arranged
in a hexagonal array. Each fluxline carries a
unit of flux,

hc
do= — ~2x 1077 Gem?. (5) ) ) o
Qe Figure 2: Vortex array in a rotating, dilute
BEC of Rubidium atoms (Engels et al., 2002).
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Superconducting MHD

@ The macroscopic Euler equations for the superfluid neutrons and the
combined proton-electron fluid are (Glampedakis, Andersson & Samuelsson, 2011)

(at + Vilvj) [Vlll + EHWAp] + vi&,n +én W]J;;nvivjn = fxi;f + f11f1ag,n7 (6)
. . . e . . n . .
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terms, f ;. and £,

vi — vi. The equations are modified by additional force
due to vortices/fluxtubes and entrainment, ..

ag,x?

@ They are supplemented by continuity equations and the Poisson equation

D+ V; (mel) =0, V20 = 4nGp. (8)

Evolution equation for the magnetic field of a type-ll superconductor?
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Conventional Mutual Friction

e Standard ‘resistivity’ due to electrons scattering off magnetic fields of
individual fluxtubes (Alpar, Langer & Sauls, 1984) results in macroscopic force

Fi= Npfl = NpppkR (vé - ug) , (9)

with fluxtube density A}, electron drag fi and fluxtube velocity u/.

@ The dimensionless drag coefficient is
(Mendell, 1991)

1/6
R ~2.3 x 1074p}/° (0%) <1 (10)

@ Rewrite v/, in terms of fluid variables to obtain

a macroscopic equation. We use a mesoscopic
force balance for an individual fluxtube
Figure 3: Fluxtubes can be envisaged as tiny,

rotating tornadoes. Different forces determine (Ha|| & Vinen, 1956)
their motion (NOAA Photo Library).
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Results | - Superconducting Induction Equation

@ Eliminating u/, leads to the force

_HclB R
47 1+ R2

Fi ~ (RE/VB + HB;8'V,B) , (11)

with the lower critical field of superconductivity H.; and B = BB'.

@ As before, combine (11) with Euler equation and Faraday’'s law to obtain
a superconducting induction equation for standard mutual friction,

ik | kBm, R
08’ = ;e (487) = 52 1%

(Ré’V,Bk + Ek/mélésvsém) :| .

o For R « 1, the inertial term dominates and the field is frozen to the
protons; on large scales electrons, protons and fluxtubes are comoving.
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Results Il - Conservative/Dissipative Contributions

@ Nature of terms in both induction equations is determined by looking at
the evolution of the magnetic energy. For standard MHD, we obtain
Omag _ B OB 1 P

= == JepviBk— — —Vix;. 12
ot 47 Ot cJeukvp Oe V'L (12)

The Hall term vanishes, while Ohmic diffusion causes energy loss oc J2.

@ In the superconducting case, we have £mag,sc = He1 B/27 and

8gmaug,sc _ Echl Hcl
ot 27 Ot 27

i ok KBmp R
<Ji€"fkvé’3 T 1A R

J? - V“:,) . (13)

with 7/ = €%v; B, decomposed into J' = 78" + 71 . The first term shows
that changing the superconducting properties alters the magnetic energy.
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Results Il - Timescales

i~ ik, I pm 7@’% R
OB ~ ¢ Vj[ek/m (va ) 27 m TR

(RB’V,Bk + Ek/mé’ésvsém> :| .

@ Similar to the Hall evolution of resistive MHD, the second term is
conservative. The last term is dissipative (like Ohmic decay) and
decreases the magnetic energy of the superconducting mixture oc 72.

@ Extract the dominant timescales from the induction equation

27?1+ R? mj
o = T LR 31 10 yr,  reoms = 2L A 1.3 x 101y (14)
K R mp R
. H . Tdiss ) Tcons 4
Comparison gives: 1%~ 1.3 %1072, 2% ~ 6.8 x 10*. (15)
TOhm THall
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Conclusions and Open Questions

@ Analogous to standard MHD, we chose one mesoscopic effect to derive
a macroscopic induction equation for the superconducting mixture
= flux freezing, dissipative/conservative contributions are present.

@ 7giss and Teons are notably longer than the typical spin-down ages
= conventional mutual friction cannot explain observed field changes
due to minimum dissipation timescale 7, ~ 1.4 x 108 yr for R = 1.

@ For shorter timescales, different dissipative mechanisms are necessary
= typical candidate for strong coupling is vortex-fluxtube ‘pinning’

o Key issue: We discuss bulk fluid evolution but neglect surface terms
= effects due to the crust-core interface are not included. Physics
are poorly understood but could be very important for neutron stars.
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Magnetic Energy

@ In standard MHD, the Lorentz force contains tension and pressure term
) 1 R T
i _ = IR _ i k
A=, {ij B -2V (BkB )] . (16)
The work is then given by
. B2
WL:/r;FﬁdVZ/?dVE/Smang. (17)
Yy

o For a superconductor, the total magnetic force has to be changed to
(Easson & Pethick, 1977; Glampedakis, Andersson & Samuelsson, 2011)

. 1 o . OHer
Fi = |BVIH, -V (p,B , 18
mag An |: J cl (pp 8pp ):| ( )

where H!, = H.1B'. Integration gives for the energy of the bulk fluid

, He1 B
Winag :/r,-F];ﬂagdvz/%dv;/smg,scdv. (19)
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