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Background Magnetic �elds

Figure 1: Neutron star PṖ diagram.

� Inferred magnetic dipole �eld

strengths reach up to 10
15G for

magnetars. Such �elds strongly

in�uence the stars' dynamics.

� Long-term �eld evolution could
explain

I observed �eld changes in pulsars

I high activity of magnetars

I neutron star `metamorphosis'

� Mechanisms causing magnetic �eld

evolution are poorly understood.

What happens if we account for core superconductivity?
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Background Macroscopic quantum states

� Equilibrium stars have 10
6 − 10

8K, while for nucleons TF ∼ 10
12K ⇒ they

are cold enough to contain super�uid neutrons and superconducting

protons. Cooper pair formation occurs due to an attractive contribution

to the nucleon-nucleon interaction.

� The type of superconductivity depends on the characteristic lengthscales.

Estimates predict a type-II state (Baym, Pethick & Pines, 1969b; Mendell, 1991)
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Background Type-II superconductivity

Figure 2: Density-dependent parameters of NS superconductivity calculated
for the NRAPR e�ective equation of state (Steiner et al., 2005).

Shown are κNS, Tcp (normalised to 10
9K), Hc2 and Hc1 (normalised to 10

16G).

The horizontal and vertical line mark κcrit = 1/
√
2 and ρcrit,II→I, respectively.
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Background Fluxtubes

� Magnetic �ux enters the system in the form of

quantised �uxtubes, arranged in a hexagonal

array. Each �uxtube carries a unit of �ux,

φ0 =
hc

2e
≈ 2× 10

−7
Gcm

2. (4)

� All �ux quanta add up to the macroscopic

magnetic induction B in the star's core.
Figure 3: Vortex array in a rota-
ting BEC (Engels et al., 2002).

� Relate B to the �uxtube surface density and inter�uxtube distance:

Nft =
B

φ0
≈ 4.8× 10

18 B12 cm
−2, dft ' N

− 1
2
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− 1
2

12 cm. (5)

Magnetic �eld evolution is linked to the motion of �uxtubes!
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FT mechanisms Ohmic dissipation

� Matter inside �uxtubes is normal conducting ⇒ the dominant coupling

is scattering of electrons o� normal protons (Baym, Pethick & Pines, 1969a).

This process is characterised by an electrical conductivity
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� Relate this to standard Ohmic di�usion
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� Timescales are very long and further lengthened as �uxtubes only occupy

a small fraction of the star's volume, estimated as B/Hc2 ∼ 10
−3B12.
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FT mechanisms Resistive drag I

� Fluxtubes are magnetised ⇒ electrons can scatter o� this magnetic �eld

(Alpar, Langer & Sauls, 1984). In analogy with super�uid hydrodynamics this

is generally called mutual friction: fd = ρpκR(ve − vft).

� Using the formalism of Sauls, Stein & Serene (1982) it is possible to

determine the corresponding, dimensionless drag coe�cient. For

typical neutron star parameters we obtain
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� Since R� 1, this is referred to as the limit of weak mutual friction.

For a given EoS and superconducting gap model, R
can be calculated as a function of the star's density.
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FT mechanisms Resistive drag II

� Resistive drag coe�cients for

three di�erent EoS (Chamel,

2008) and a standard proton

gap parametrisation (Ho,

Glampedakis & Andersson, 2012).

� Approximate solution often found in the literature is independent of ∆:
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� Deriving a superconducting induction equation it can be shown that

this mechanism can also not drive fast �eld evolution (Graber et al., 2015).
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FT mechanisms Repulsive force I

� Two parallel �uxtubes separated by r21

experience a repulsive force per unit length

F12 = −∇Eint = − φ20
8π2λ3

K1

( r21
λ

)
r̂21. (10)

� For a lattice, the net force on a single line is

obtained by summing individual contributions.

� In the triangular case all terms cancel and no �eld changes takes place.

� However, in a realistic �uxtube lattice the long-range order is likely to be

destroyed ⇒ a gradient in Nft results in a non-zero net force on the

�uxtubes, which would drive �eld evolution. We expect

Frep = −g(Nft)∇Nft. (11)
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FT mechanisms Repulsive force II

� For standard pulsars with 10
12 − 10

13G the problem simpli�es because of
the hierarchy of the important lengthscales, speci�cally dft ' r21 � λ:

I K1 (r21/λ) can be approximated as a decaying exponential.

I In the summation only account for the six nearest neighbours.

� In this case, we derive the following repulsive force
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� Neglecting �uxtube inertia, the force balance reads∑
f = −g(Nft)∇Nft − ρpκRvft = 0, (13)
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FT mechanisms Repulsive force III

� Combine the force balance with a continuity equation for Nft to obtain a

non-linear di�usion equation for the evolution of the �uxtubes/�eld

∂tNft +∇ (Nftuft) = ∂tNft −∇
(
Nft g(Nft)

ρpκR
∇Nft

)
= 0. (14)

� Extract a timescale for a

characteristic lengthscale L:

τrep =
L2ρpκR
Nft g(Nft)

. (15)

� Estimates for L = 10
6 cm and

di�erent B �elds show strong

variability with density.
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FT mechanisms Buoyancy I

� Fluxtubes are buoyant as a result of the magnetic pressure inside their

cores. This creates a radially acting lift force, fb, trying to drive �uxtubes

out of the core (Muslimov & Tsygan, 1985; Harvey, Ruderman & Shaham, 1986).

� The buoyancy force is related to the gradient of the superconducting

magnetic pressure. In the limit B . Hc1, which approximates the neutron

star core, one has P = Hc1B/4π (Easson & Pethick, 1977). This gives
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(
λ

ξft

)
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� Balancing the resistive drag with the buoyancy force, we arrive at a

similar non-linear di�usion equation. The respective timescale reads

τb = L2ρpκR
16π2λ2

φ20 ln(λ/ξft)
. (17)
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FT mechanisms Buoyancy II

� Estimates for L = 10
6 cm are of the order of observed �eld changes.

� Self-consistent magneto-thermal simulations of superconducting cores

show that buoyancy is too weak to drive �eld evolution (Elfritz et al., 2016).
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Conclusions

� We have studied various mechanisms that are expected to a�ect the

superconducting �uxtubes present in the outer neutron star core and

calculated characteristic timescales for realistic equations of state.

� Resulting �eld changes act on shortest timescales at low densities, close

to the crust-core interface, but are still too long to explain observations.

� Many open problems remain:

I How do �uxtubes interact with neutron vortices?

I Is the outer core in a type-II state after all (maybe type-I)?

I What is the �eld con�guration right before the phase transition?

� One possible approach: Use the analogy with laboratory systems to

make progress (Graber, Andersson & Hogg, 2017).
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Conclusions

Thank you!

SMFNS2017 Varadero, Cuba 14



Appendix

Figure 4: H(T )-diagram of a type-II superconductor illustrating the phase transition. As the medium
permeated by the induction B < Hc1 is cooled down, it follows the yellow line from right to left. Below
the transition temperature, Tc, magnetic �ux (continuously distributed in the normal state) is �rst

nucleated into �uxtubes. These are subsequently expelled if the matter is cooled further and a �ux-free
Meissner state is formed.
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Appendix

Figure 5: Parametrised energy gaps shown as a function of the proton and neutron Fermi wave numbers,
kFp and kFn, respectively. Singlet-paired gaps for the protons (cyan, solid) and neutrons (blue, dashed)
are found on the left. Further on the right, two di�erent neutron triplet gaps are given, i.e. a shallow

(purple, dot-dashed) and a deep (yellow, dot-dot-dashed) model.

∆(kFx) = ∆0
(kFx − g0)2

(kFx − g0)2 + g1

(kFx − g2)2

(kFx − g2)2 + g3
. (18)
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