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Motivation Core magnetic field

� Neutron star magnetic fields play a crucial role in astrophysics, e.g.:

I explain the high activity of magnetars & high-B field pulsars.
I field evolution linked to neutron star ‘metamorphosis‘.
I influence the dynamics of binary neutron star mergers.
I related to many astrophysical phenomena (e.g., FRBs, GRBs).

� While a lot of progress has been made in modelling the exterior and crustal
magnetic fields, there are still many open questions regarding the field
in the core, carrying a significant fraction of the magnetic energy.

� Open problems concern, e.g., correct multi-fluid description of matter,
ambipolar diffusion, role of crust-core interface, evolution time-scales for
type-II superconducting matter, and possibility of fast core dissipation.
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Motivation Superconductivity

� The conditions in the interior are such that nucleons can undergo phase
transitions into superfluid states as a result of Cooper pairing. Detailed
gap calculations suggest the following core critical temperatures:

Tc, protons ∼ 109 − 1010 K, Tc, neutrons ∼ 108 − 109 K, (1)

� Our understanding of NS superconductivity is mainly based on time-inde-
pendent, single-component considerations (Baym, Pethick & Pines, 1969):

I Outer-core protons are in a type-II state
with flux confined to a fluxtube array.

I In the inner core, a transition to an
intermediate type-I state takes place.

I Magnetic flux expulsion times are very
long, leading to a meta-stable state.

Figure 1: Laboratory type-II and
intermediate type-I superconductor

(Brandt & Essmann, 1987).
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Approach Condensate coupling

What happens to this picture of core superconductivity when coupling
(specifically entrainment) between the condensates is included?

� Expanding earlier works (Alpar, Langer & Sauls, 1984; Charbonneau & Zhitnitsky,

2007; Alford & Good, 2008; Haber & Schmitt, 2017), we use techniques for labo-
ratory systems to construct phase diagrams by deducing the protons’
ground state in presence of a magnetic field as a function of density.

� With entrainment, velocity-dependent terms in energy density read

Fvel =
1
2mnp|Vp|2 + 1

2mnn|Vn|2 − 1
2ρ

pn|Vp − Vn|2 , (2)

where np,n are the nucleon number densities, the coefficient ρpn < 0
determines the strength of entrainment (Andreev & Bashkin, 1976) and Vp,n

are superfluid velocities related to canonical momenta, i.e., ∝ ∇argψx.
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Approach Ginzburg–Landau model

� In a mean-field framework, entrainment first enters at 4th order in ψn,p

and 2nd order in their derivatives, i.e., we require a linear combination of
terms |ψx |2|∇ψy |2, ψxψy∇ψ?x ·∇ψ?y , ψxψ

?
y∇ψ?x ·∇ψy , ψ

?
xψ

?
y∇ψx ·∇ψy where

x , y ∈ {p, n}. Galilean invariance can be used to simplify the sum.

� The total free energy density of our two-component superconductor is

F [ψp, ψn,A] = 1
8π |∇× A|2 + gpp
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where gpp,nn define the self-repulsion of the condensates, gpn ≈ 0 their
mutual repulsion and hi are related to the condensates’ coupling.
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Approach Two thought experiments

� To find the ground state in the presence of an imposed magnetic field,
we can control (i) the magnetic flux density, B = ∇× A, by imposing a
mean flux B, or (ii) the thermodynamic external magnetic field H.

� Case (i) approximates the neutron star interior, which becomes super-
conducting as the star cools in the presence of a pre-existing field.

Figure 2: Phase diagrams for a one-component superconductor, for different values of the Ginzburg-Landau
parameter, κ. The experiment with an imposed external field, |H|, in nondimensional units is shown on the left,

while the right panel shows the phase transitions in the experiment with an imposed mean flux, B.
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Results Phase diagrams

� For two-component systems, phase diagrams look more complicated and
we obtain additional mixed states as a result of condensate interactions.
These are marked by first-order transitions at Hc1′ < Hc1 and Hc2′ > Hc2.

Figure 3: Phase diagrams for our two-component superconductor as a function of κ, and√
gnnnn/gppnp = 0.371, np/nn = 0.097, gnp = 0, h1 = 0.102, h2 = 0.387, and h3 = 0.263.

The shading is indicative of the actual distribution of magnetic flux.
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Results Mixed states

� We find inhomogeneous regimes where fluxtube and non-superconducting
regions (left) as well as Meissner and fluxtube regions (right) alternate.

Figure 4: Inhomogeneous
ground states, where
brightness and hue

indicate the density and
phase of the proton
order parameter, ψp,

respectively.

� Reminiscent of type-1.5 superconductivity
in terrestrial systems ⇒ entrainment causes
fluxtube repulsion on short scales & attraction
on large scales, resulting in mixed states.

Figure 5: Image of multi-band SC
Mg2B (Moshchalkov et al., 2009).
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Results Skyrme connection

� After determining the composition based on the full Skyrme model, we
link our Ginzburg–Landau model to a reduced Skyrme functional to obtain
the coefficients hi and determine the ground state at different densities.

Figure 6: Phase diagrams for the NRAPR equation of state as a function of density.

Although exact positions of transitions are model dependent, for typical
EoSs the core retains flux and is occupied by mixed states for fields below

B . 1015 G and partially by fluxtubes for 1015 . B . 1016 G.
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