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Background

¢ \We have detected ~3,000 pulsars,
with ~2,000 being isolated. They
have diverse characteristics, visible
in different parts of electromagne-

tic spectrum == neutron star zoo.

e Galactic core-collapse supernova
rate is insufficient for independent
formation of these classes (Keane &
Kramer 2008) s evolutionary links
(e.g., Vigano et al. 2013)?
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NS birth vs. Galactic CCSN rates
(Keane & Manchester 2008).
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Pulsar Population Synthesis

e We only observe a very small fraction of the ~10° neutron stars
expected in the Milky Way. Instead of looking at individual pulsars,
population synthesis focuses on the entire population (e.g. Faucher-
Giguere & Kaspi 2006, Lorimer et al. 2006, Gullon et al. 2014, Cieslar et al. 2020):.

model birth evolve apply filters to compare mock
properties with parameters mimic samples to

Monte-Carlo forward in observational observations to
approach time biases/limits constrain input

e Method provides e.g. birth rates and initial v/ P / B distributions.

» focus on Deep Learning (DL) for the comparison




DL Proof-of-concept Study - Ronchi et al. (2021)

e Focus on positional & velocity evolution
and follow earlier works using an updated
spiral-arm (Yao et al. 2017) and Galactic model
(Marchetti et al. 2019) plus rigid Galaxy rotation.

e Evolve 10° stars for (up to) 107 yr varying

exponential scale dispersion o, of
height h_for birth [l W Maxwell distribution
distance from plane for kick velocities

to obtain 16,384 mock populations. Extract
images (labelled by h_,0,) as training data

for a convolutional neural network (CNN).  Galactic evolution tracks for
h. =018 kpc, 0, =265 km/s.
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Number of NSs

e Evolve 10° stars for (up to) 107 yr varying
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height h_for birth [l W Maxwell distribution
distance from plane for kick velocities

to obtain 16,384 mock populations. Extract
images (labelled by h_,0,) as training data

for a convolutional neural network (CNN).  sStellar density and velocities
in ICRS coordinates.

lupec! [mas yr~!]
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e Focus on positional & velocity evolution
and follow earlier works using an updated
spiral-arm (Yao et al. 2017) and Galactic model
(Marchetti et al. 2019) plus rigid Galaxy rotation.

e Evolve 10° stars for (up to) 107 yr varying
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height h_for birth [l W Maxwell distribution
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128X64 X3 126 X62X32

CNN architec-
conv2 (N Miaabeni IR ey CIXIINGL gy a0RIANGe
ture and results 2x2 N 3364 5
- = —
from Ronchi et
al. (2021).

e \We use RMSE as loss
function & validation
metric, Kaiming
initialisation, Adam
for gradient-descent
optimisation, and 80
[/ 20% for the training
/ validation process.

l(hc P— hc,T)/hc,Tl
I(ok,p — ok, )0k, T

1.0
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h_ 128X 64 X3 126 X62X32
from Ronchi et ) |— -‘~-‘..f“e"
al. (2021). \

e \We use RMSE as loss

= T .. function & validation
~  MRE = 0.061 gives © MRE=0.039 gives metric, Kaiming
L ME = 0.01 kpc L ME =10 km/s initialisation, Adam
S ath_=018kpc £ ato, =265km/s for gradient-descent
optimisation, and 80
s [ 20% for the training
o [kpe

/ validation process.




DL Proof-of-concept Study: Selection Biases

e Analyse the CNN'’s predictive power as a function of available data
points (i.e. NSs) by resampling our fiducial simulation to incorporate

selection biases from NSs with proper-motion measurements.
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DL Proof-of-concept Study: Selection Biases

e Analyse the CNN'’s predictive power as a function of available data
points (i.e. NSs) by resampling our fiducial simulation to incorporate

selection biases from NSs with proper-motion measurements.

0.8

increasing the number of detected
neutron stars and accurately classifying
them with SKA will allow us to better

constrain the pulsar population
~—_ 1020 \\.>
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Magneto-rotational Evolution & Emission

e Model additional information to
constrain population properties further:

logio(Bd [Gauss])
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predict P and P by solve ODEs for B, P, x

modelling magneto- (Aguilera et al. 2008,
rotational evolution Philippov et al. 2014)

Spin period [s]

Evolution tracks in Pl5—plane.
e Combine with an emission model and Objects are born on top left.

survey detectability limits to deter-
mine observability. This produces mock
PP populations, which we compare to
the observed pulsar sample with CNNs.




Magneto-rotational Evolution & Emission

e Model additional information to
constrain population properties further:

predict P and P by solve ODEs for B, P, x
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~ logio(Ba [Gauss))

modelling magneto- (Aguilera et al. 2008,
rotational evolution Philippov et al. 2014)

e Combine with an emission model and
survey detectability limits to deter-

mine observability. This produces mock infer information about
PP populations, which we compare to the initial P & B distri-
the observed pulsar sample with CNNs. butions and magnetic

field evolution




Multi-modal DL

e Different parts of the pulsar population

are observed in different wavebands: different neural
networks are suitable

observations provide complementary :
information about the same underlyin to analyse different
L . ying types of observations
neutron star population.

e In computer science, this concept is known as multi-modal learning.

“Batman raises the stakes in his war on crime. With the help of Lt. Jim Gordon &
and District Attorney Harvey Dent, Batman sets out to dismantle the remaining
criminal organizations that plague the streets. The partnership proves to be

effective, but they soon find themselves prey to a reign of chaos unleashed by a

rising criminal mastermind known to the terrified citizens of Gotham as the
Joker.” -TMDB




Multi-modal DL

e Different parts of the pulsar population

are observed in different wavebands: different neural
observations provide complementary R E R SUlEle
. . X to analyse different
information about the same underlying types of observations

neutron star population.

e In computer science, this concept is known as multi-modal learning.

sl

Multi-modal learning -

architecture combining 'S ﬂwm
information from movie ' concate-
poster plus description i nate
(credit: TMDB) to predict features

the genre of a movie.




Conclusions

Deep Learning with
CNNs is a promising
tool to infer birth
properties from the
current population
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Ronchi et al. (2021) - Training Results

Training

—— Validation

CNN validation
results for h
RMSE = 0.038 kpc
& MRE = 0.061.

/lc, P— hc,T [kpC]
I(he,p — he, T)/he, !

he RMSE loss [kpc]
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— Training
—— Validation

CNN validation
results for o
RMSE = 8.8 km/s
& MRE = 0.039.

ox RMSE loss [km s™!]
ox,p— ok, 1 [kms™]



Ronchi et al. (2021) - Degeneracy

Histogramming distances from
the Galactic plane for current
mock pulsar populations, we
note a degeneracy between h_
and o, : large scale heights
combined with small velocity
dispersions lead to same
outcomes as small scale heights
with large velocity dispersions.

CNN recovers the degeneracy!
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We find an anticorrelation between
the residuals in hC and O



Ronchi et al. (2021) - Selection Function

e To incorporate selection effects &
observational biases, we use a
phenomenological approach to
reanalyse the CNN performance.
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fldo) = dg exp(~do/2) 216 isolated NSs with proper motions.

Observed
[—1 Simulated all

1 Simulated+bias e Use proper motion and distance
estimates for 216 isolated pulsars to
deduce empirical selection function
f(d ) and resample population with
h.=0.18 kpc and g, = 265 km/s.

Number of NSs




