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Neutron-star formation

● Neutron stars are one of three 
types of compact remnants, 
created during the final stages 
of stellar evolution.

● When a massive star of 8 - 25 
solar masses runs out of fuel, 
it collapses under its own 
gravitational attraction and 
explodes in a supernova.

● During the collapse, electron 
capture processes (p + e- → n + 𝜈e) 
produce (a lot of) neutrons.
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Snapshot of a 3D core-collapse 
supernova simulation (Mösta et al., 2014)

mass:  1.2 - 2.1 Mⵙ

radius:  9 - 15 km

density:  1015 

g/cm3



Lighthouse radiation

● Neutron stars have extreme 
magnetic fields between 108 
- 1015 G. For comparison, the 
Earth’s magnetic field is 0.5 G.

● Because rotation and magnetic 
axes are misaligned, neutron 
stars emit radio beams like a 
lighthouse.

● These pulses can be observed 
with radio telescopes. This is how 
neutron stars were first detected 
and why we call them pulsars.
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Sketch of the 
neutron-star exterior.

Credit: J. Christiansen

Dame Jocelyn Bell 
Burnell in front of her 
radio telescope in 
Cambridge, UK.



The neutron-star zoo

● Pulsars are very precise clocks and we 
time their pulses to measure rotation 
periods P and derivatives P.

● We now observe neutron stars as pulsars 
across the electromagnetic spectrum.

● Grouping neutron stars in the PP-plane 
according to their observed properties 
serves as a diagnostic tool to identify 
different neutron-star classes.
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Period period-derivative plane for the pulsar 
population. Data taken from the ATNF Pulsar 

Catalogue (Manchester et al., 2005)

~ 3,000 pulsars are known to date
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Period period-derivative plane for the pulsar 
population. Data taken from the ATNF Pulsar 

Catalogue (Manchester et al., 2005)

~ 3,000 pulsars are known to date
Focus on the isolated 

radio-pulsar population
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General idea

● We can estimate the total number of neutron stars in our Galaxy

    ✕                        ＝

● We only detect a very small fraction of all neutron stars. Population synthesis 
bridges this gap focusing on the full population of neutron stars (e.g. Faucher- 
Giguère & Kaspi 2006, Lorimer et al. 2006, Gullón et al. 2014, Cieślar et al. 2020):

  graber@ice.csic.es      5

model birth 
properties with 

Monte-Carlo 
approach

apply filters to 
mimic 

observational 
biases/limits

compare mock 
simulations to 

observations to 
constrain input

evolve 
properties 
forward in 

time

CC supernova rate:
~ 2 per century

Galaxy age: 
~ 13.6 billion years

NS number:  
~ 2.8 x 108



Goals

● Population synthesis allows us to 
constrain the natal properties of 
neutron stars and their birth rates. 

● This is for example relevant for:
○ Massive star evolution
○ Gamma-ray bursts
○ Fast-radio bursts
○ Peculiar supernovae

● We can also learn about evolutionary links between different neutron-star 
classes (e.g., Viganó et al., 2013). This is important because estimates for the 
Galactic core-collapse supernova rate are insufficient for to explain the 
independent formation of different classes of pulsars (Keane & Kramer, 2008).
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Estimated Galactic 
core-collapse 

supernova rate and 
birth rates for 

different pulsar 
classes (Keane & 
Kramer, 2008).



Dynamical evolution I 

● Neutron stars are born in star-forming 
regions, i.e., in the Galactic disk along the 
Milky Way’s spiral arms, and receive 
kicks during the supernova explosions.

●  We make the following assumptions:
○ Spiral-arm model (Yao et al., 2017) 

plus rigid rotation with T = 250 Myr
○ Exponential disk model with scale 

height hc (Wainscoat et al., 1992)
○ Single-component Maxwell 

kick-velocity distribution with 
dispersion σk (Hobbs et al., 2005)

○ Galactic potential (Marchetti et al., 2019)
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Artistic 
illustration of 

the Milky 
Way (credit: 
NASA JPL)

For Monte-Carlo approach, 
we vary two uncertain 
parameters h

c and σ
k .



Dynamical evolution II 

● For our Galactic model ΦMW, we evolve the stars’ position & velocity by solving 
Newtonian equations of motion in cylindrical galactocentric coordinates:
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Galactic evolution tracks for hc = 0.18 kpc, σ = 265 km/s.

Top view Side view



Magneto-rotational evolution I 

● The neutron-star magnetosphere exerts a torque 
onto the star. This causes spin-down and 
alignment of the magnetic and rotation axes.

● Neutron star magnetic fields decay due to the 
Hall effect and Ohmic dissipation in the outer 
stellar layer (crust) (e.g., Viganó et al., 2013 & 2021).

● We make the following assumptions:
○ Initial periods follow a log-normal 

with μP and σP (Igoshev et al., 2022)
○ Initial fields follow a log-normal 

with μB and σB (Gullón et al., 2014)
○ Above τ ~ 106 yr, field decay follows 

a power-law with B(t) ~ B0 (1 + t/τ)α.
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Here, we vary the five 
uncertain parameters 
μP, μB, σP, σB and α.



Magneto-rotational evolution II 

● To model the magneto-rotational 
evolution, we numerically solve 
two coupled ordinary differen- 
tial equations for the period and 
the misalignment angle (Aguilera et 
al., 2008; Philippov et al. 2014). 

● We use results from 2D magneto- 
thermal simulations to determine 
the evolution of the magnetic field.

● This allows us to follow the stars’ P 
and P evolution in the PP-plane.

  graber@ice.csic.es     10

PP evolution tracks for 
μP = -0.6 , σP = 0.3 , μB = 

13.25 and σB = 0.75.



Radio emission and detection 

● The stars’ rotational energy Erot is converted into 
coherent radio emission. We assume that the 
corresponding radio luminosity Lradio is proportio- 
nal to the loss of Erot (Faucher- Giguère & Kaspi, 2006; 
Gullón et al., 2014). L0 is taken from observations.

● As emission is beamed, ~ 90% of pulsars do not 
point towards us. For those intercepting our line of 
sight, compute radio flux Sradio & pulse width W.
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A pulsar counts as detected, if it exceeds the sensitivity 
threshold for a survey recorded with a specific radio telescope.



Three pulsar surveys

● We compare our simulated populations 
with three surveys from Murriyang 
(the Parkes Radio Telescope):
○ Parkes Multibeam Pulsar Survey 

(PMPS): 1,009 isolated pulsars
○ Swinburne Parkes Multibeam 

Pulsar Survey (SMPS): 218 isol. p.
○ High Time Resolution Universe 

Survey (HTRU): 1,023 isol. pulsars

  graber@ice.csic.es     12

Can we constrain birth properties 
by looking at a current snapshot 

of the pulsar population? 
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Comparing models and data

● Comparing observations to models and constraining 
regions of the parameter space that are most probable 
given the data is fundamental to many fields of science.

● Pulsar population synthesis is complex and has many free parameters. To 
compare synthetic simulations with observations, people have
○ Randomly sampled and then optimised ‘by eye’ (e.g., Gonthier et al., 2007)
○ Compared distributions of individual parameters using χ2- and KS-tests 

(e.g., Narayan & Ostriker, 1990; Faucher-Giguère & Kaspi, 2006)
○ Used annealing methods for optimisation (Gullón et al., 2014)
○ Performed Bayesian inference for simplified models (Cieślar et al., 2020)
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These methods do not scale well and are difficult to use with 
the multi-dimensional data produced in population synthesis.



Deep learning

● Deep Learning is a subfield of Artificial Intelli- 
gence and Machine Learning. It focuses on 
using multi-layered neural networks to learn 
from large datasets. Different to classi- cal ML 
approaches, deep learning does not require 
external feature engineering.

● Recognising features in a hierarchical way 
allows deep neural networks to model 
complex non-linear relationships for large 
input data. This makes deep learning 
powerful when working with unstructured 
data such as images, where the number of 
features / pixel can easily exceed millions.
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(top), Acheron Analytics (bottom)



Convolutional neural networks (CNNs)

● A neural network is composed of layers, which 
represent stacks of neurons (objects holding a 
single numerical value). Each layer encodes a 
simplified representation of the input data.

● A deep-learning algorithm learns more and 
more about the input as the data is passed 
through successive network layers.

● The Multilayer Perceptron is the simplest set- 
up where input and output are fully connected. 
In a CNN, not all nodes are connected, which 
reduces the number of trainable parameters 
and allows more flexibility for training.
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Sketch of a very simple 
fully connected neural network.
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Sketch of a very simple 
convolutional neural network.



Convolutional and max pooling layers

● Besides fully connected layers, CNNs are composed of two types of filters:
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Convolutional filters Max-pooling layers

These filters recognise features, 
such as detecting edges of an 

object in an image.

These filters extract the most 
relevant features, helping to 

speed up the training process.
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Proof of concept study I

● In Ronchi et al. (2021), we focused on the dynamical 
evolution and simulated a database of 128 x 128 
(=16,384) synthetic neutron-star populations.

● We perform supervised ML and train a CNN to ex- 
tract labels hc and σ from position / velocity maps:
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Vary scale height 
hc in range
[0.02-2] kpc

Vary dispersion σk of 
kick distribution 

between [1-700] km/s
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Proof of concept study II

● Training info: We use the root mean square error as the loss function and 
validation metric, Kaiming initialisation, Adam for gradient-descent optimi- 
sation, and apply a 80 / 20% split of the full dataset for training and validation.

● The CNN recovers the input values very well. To visualise this, we can look at 
the relative error between target and predicted labels
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 We did not include 
observational biases and 

assumed all simulated stars 
are detectable! 216 pulsars 

have measured proper 
motions, insuffi- cient for 

this precision.

MRE = 0.061 gives
ME = 0.01 kpc 
at hc = 0.18 kpc

MRE = 0.039 gives
ME = 10 km/s 

at σk = 265 km/s



Statistical inference

● Our initial study focused on deducing point estimates. However, we often do 
not require exact estimates but knowledge of probable regions is sufficient.

● This is where Bayesian inference comes in: based on some prior knowledge π
(θ), a stochastic model and some observation x, we want  to infer the most 
likely distribution P(θ|x) for our model parameters θ given the data x. This is 
encoded in Bayes’ Theorem:

  graber@ice.csic.es     19

For complex simulators, the 
likelihood is defined 
implicitly and often 

intractable. This is overcome 
with simulation-based 

(likelihood-free) inference 
(see e.g. Cranmer et al., 2020).



Simulation-based inference I

● To perform Bayesian inference for any kind of (stochastic) forward model 
(e.g. those specified by simulators), we use the following approach:
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Simulation-based inference II

● Different approaches (all relying on deep learning) exist to learn a probabilis- 
tic association between the simulated data and the underlying parameters. 
These algorithms essentially focus on different pieces of Bayes’ theorem:
○ Neural Posterior Estimation (NPE) (e.g., Papamakarios & Murray, 2016)
○ Neural Likelihood Estimation (NLE) (e.g., Papamakarios et al., 2019)
○ Neural Ratio Estimation (NRE) (e.g., Hermans et al., 2020; Delaunoy et al., 2022)

● All methods exist in sequential form (SNPE, SNLE, SNRE), which adds a fifth 
step to workflow. Instead of sampling from the prior, we adaptively generate 
simulations from the posterior. This typically requires fewer simulations.
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We focus on NPE. This allows us to directly learn the posterior 
distribution. In contrast, NLE and NRE need an extra (potentially 
time consuming) MCMC sampling step to construct a posterior.



Simulation-based inference I

● To perform Bayesian inference for any kind of (stochastic) forward model 
(e.g. those specified by simulators), we use the following approach:
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Workflow

● With our complex population synthesis simulator, 
we fix the dynamics to a fiducial model and focus 
on the magneto-rotational evolution. 

● From our simulated populations, we generate summary 
statistics: density maps for three surveys in the PP-plane.

● To perform the inference, we use the PyTorch package sbi (Tejero-Cantero et al., 
2020; https://www.mackelab.org/sbi/). Our trainable neural network has two parts:
○ CNN (see Ronchi et al., 2021): compresses the data into a latent vector.
○ Mixture density network: our posterior is approximated by a mixture of 

10 Gaussians components; we learn the means, stds and coefficients. 

● We initialise the CNN with Kaiming, use 89% of data for training, 10% for vali- 
dation and 1% for testing, set the batch size to 8, and learning rate to 5 x 10-4.

  graber@ice.csic.es    23

https://www.mackelab.org/sbi/


Posterior distributions for test sample

● As our conditional density esti- 
mator is represented by a neural 
network, we can directly evaluate 
the posterior distributions for a 
given (test) observation.

● We recover narrow, well-defined 
posteriors for all five parameters 
that typically contain the ground 
truth (parameters used for the 
forward simulation) at the 95% 
credibility level.
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Posterior distributions for observed population

● With our optimised neural 
network, we can also infer the 
posteriors for the pulsar 
population recorded in our 
three surveys and recover the 
95% credibility intervals:
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Take-home points
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● Neutron stars are compact 
remnants that emit pulsed 
radiation across the electro- 
magnetic spectrum.

● Standard radio pulsars 
constitutes the largest class 
of observed neutron star.

● Pulsar population synthe- 
sis bridges gap between 
known pulsars and the 
invisible population.

● It allows us to constrain 
birth rates of different 
neutron star classes and 
birth properties.

● Deep learning with neural networks is ideal to analyse 
high-dimensional astrophysical data.

● Simulation-based inference has opened up the possibility 
for statistical inference for complex simulators.



Outlook

● There are several directions that we have started to look into:
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IMPROVING THE SIMULATOR

● Explore different assump- 

tions on initial period and 

magnetic-field distributions

● Extend framework to model 

also gamma-ray and X-ray 

emission and predict the 

multi-wavelength emission

IMPROVING SBI● Test other approaches● Expand the approach to active learning and derive 
posteriors sequentially using SNPE, etc. 



THANK YOU
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