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Neutron-star formation

e Neutron stars are one of three
types of compact remnants,
created during the final stages
of stellar evolution.

mass: 1.2 - 2.1 MD

e \When a massive star of 8 - 25
solar masses runs out of fuel,
it collapses under its own
gravitational attraction and
explodes in a supernova.

radius: 9 - 15 km
density: 10
g/cm?

e During the collapse, electron
capture processes (p+e > n+wv )
produce (a lot of) neutrons.
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Lighthouse radiation

Rotation axis

e Neutron stars have extreme
magnetic fields between 108
-10" G. For comparison, the
Earth’'s magnetic field is 0.5 G.

e Because rotation and magnetic
axes are misaligned, neutron
stars emit radio beams like a
lighthouse.

e These pulses can be observed
with radio telescopes. This is how
neutron stars were first detected
and why we call them pulsars.




The neutron-star zoo

e Pulsars are very precise clocks and we
time their pulses to measure rotation
periods P and derivatives P.

e \We now observe neutron stars as pulsars
across the electromagnetic spectrum.

logyo Period derivati

~ 3,000 pulsars are known to date

logu Period [ I ¢ Grouping neutron stars in the Pl5-plane
according to their observed properties
serves as a diagnostic tool to identify
different neutron-star classes.
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The neutron-star zoo

Focus on the isolated
radio-pulsar population

logyg Period 3]

1sars

Pulsars are very precise clocks and we
time their pulses to measure rotation
periods P and derivatives P.

We now observe neutron stars as pulsars
across the electromagnetic spectrum.

~ 3,000 pulsars are known to date

Grouping neutron stars in the Pl5-plane
according to their observed properties
serves as a diagnostic tool to identify
different neutron-star classes.
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General idea

e \We can estimate the total number of neutron stars in our Galaxy

CC supernova rate: x Galaxy age: e NS number:
~ 2 per century ~13.6 billion years — ~2.8x108

e \We only detect a very small fraction of all neutron stars. Population synthesis
bridges this gap focusing on the full population of neutron stars

model birth evolve apply filters to compare mock
properties with properties mimic simulations to

Monte-Carlo forward in observational observations to
approach time biases/limits constrain input
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Goals

e Population synthesis allows us to
constrain the natal properties of
neutron stars and their birth rates.

e Thisis for examp|e relevant for: XDINSs  Magnetars ~ Total ~ CCSN rate
: . 28405 5673 21+10 t12 1.9+ 1.1

Massive star evolution 1402 28716 21410 032 0 19411
Gamma-ray bursts 11+£02 2247 21+10 2 5gh). 19ETd

Fast-radio bursts 1.6+03 32723 21+10 2 30 19+ 1.1
Peculiar supernovae 11402 2217 21410 2 57t 19+11

O O O O

e \We can also learn about evolutionary links between different neutron-star
classes . This is important because estimates for the
Galactic core-collapse supernova rate are insufficient for to explain the
independent formation of different classes of pulsars




Dyvnamical evolution |

e Neutron stars are born in star-forming
regions, i.e, in the Galactic disk along the
Milky Way's spiral arms, and receive
kicks during the supernova explosions.

e We make the following assumptions:

o Spiral-arm model
plus rigid rotation with T = 250 Myr

o Exponential disk model with scale
height h_

o Single-component Maxwell
kick-velocity distribution with
dispersion g,

o Galactic potential




Dynamical evolution li

e For our Galactic model ®, ., we evolve the stars’ position & velocity by solving
Newtonian equations of motion in cylindrical galactocentric coordinates:

=] & =] 5
Age [Myr])

w




Magneto-rotational evolution |

e The neutron-star magnetosphere exerts a torque
onto the star. This causes spin-down and
alignment of the magnetic and rotation axes.

e Neutron star magnetic fields decay due to the
Hall effect and Ohmic dissipation in the outer
stellar layer (crust)

e We make the following assumptions:

o Initial periods follow a log-normal
with u,and o,

o Initial fields follow a log-normal
with p; and oy Here, we vary the five

o Above 1~10°yr, field decay follows uncertain parameters
a power-law with B(t) ~ B, (1 + t/1)% Mps g Op, 0 and a.




Magneto-rotational evolution li

e To model the magneto-rotational
evolution, we numerically solve
two coupled ordinary differen-
tial equations for the period and
the misalignment angle

N
~

e We use results from 2D magneto-
thermal simulations to determine
the evolution of the magnetic field.

[y
N

Spin period derivative [s/s]
=
w
logi0(Bd [Gauss])

e This allows us to follow the stars’ P
and P evolution in the PP-plane.
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Radio emission and detection

The stars’ rotational energy Emt iIs converted into
coherent radio emission. We assume that the P 1/2
) . . . i : 170
corresponding radio luminosity L _ .. is proportio- ey 53 x Edét
nal to the loss of Erot
. LO is taken from observations.

As emission is beamed, ~ 90% of pulsars do not
point towards us. For those intercepting our line of
sight, compute radio flux S & pulse width W.

S . Lradio
radio —
Qbeamd2

radio

A pulsar counts as detected, if it exceeds the sensitivity
threshold for a survey recorded with a specific radio telescope.




Three pulsar surveys

o W
Wi

e compare our simulated populations
th three surveys from Murriyang

(the Parkes Radio Telescope):

@)

Parkes Multibeam Pulsar Survey
(PMPS): 1009 isolated pulsars
Swinburne Parkes Multibeam
Pulsar Survey (SMPS): 218 isol. p.

o High Time Resolution Universe

Survey (HTRU): 1,023 jsol. pulsars

Can we constrain birth properties
by looking at a current snapshot
of the pulsar population?

Observed PMPS
Observed SMPS
Observed HTRU

°  90° 120° 150°

Observed PMPS
Observed SMPS

Observed HTRU | -«
-
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Comparing models and data

e Comparing observations to models and constraining
regions of the parameter space that are most probable
given the data is fundamental to many fields of science.

Pulsar population synthesis is complex and has many free parameters. To
compare synthetic simulations with observations, people have

@)
(@)

Randomly sampled and then optimised ‘by eye’
Compared distributions of individual parameters using x°- and KS-tests

Used annealing methods for optimisation
Performed Bayesian inference for simplified models

These methods do not scale well and are difficult to use with
the multi-dimensional data produced in population synthesis.
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Deep learning

Deep Learning is a subfield of Artificial Intelli-
gence and Machine Learning. It focuses on
using multi-layered neural networks to learn
from large datasets. Different to classi- cal ML
approaches, deep learning does not require
external feature engineering.

Recognising features in a hierarchical way
allows deep neural networks to model
complex non-linear relationships for large
iInput data. This makes deep learning
powerful when working with unstructured
data such as images, where the number of
features / pixel can easily exceed millions.

ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

MACHINE LEARNING

Algorithms whose performance improve

as they are exposed to more data over time

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data

Machine Learning




Input

Convolutional neural networks (CNNs)

Hidden layers

Output

A neural network is composed of layers, which
represent stacks of neurons (objects holding a
single numerical value). Each layer encodes a
simplified representation of the input data.

A deep-learning algorithm learns more and
more about the input as the data is passed
through successive network layers.

The Multilayer Perceptron is the simplest set-
up where input and output are fully connected.
In @ CNN, not all nodes are connected, which
reduces the number of trainable parameters
and allows more flexibility for training.
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Convolutional and max pooling layers

e Besides fully connected layers, CNNs are composed of two types of filters:

Convolutional filters

Max-pooling layers

These filters recognise features, These filters extract the most
such as detecting edges of an relevant features, helping to
object in an image. speed up the training process.
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Proof of concept study |

e In Ronchi et al. (2021), we focused on the dynamical
evolution and simulated a database of 128 x 128
(=16,384) synthetic neutron-star populations.

Number of NSs

Vary scale height Vary dispersion o, of

h_inrange kick distribution
[0.02-2] kpc between [1-700] km/s

lural [mas yr~']

e \We perform supervised ML and train a CNN to ex-
tract labels h_and o from position / velocity maps:

128 X643 126 X62X32

63X31x32 61X29x64
Conv2D MaxPool Conv2D MaxPool 30X14x64

u B 5. e p R
j ReLU

lupecl [mas yr

' ReLU




Proof of concept study li

Training info: We use the root mean square error as the loss function and
validation metric, Kaiming initialisation, Adam for gradient-descent optimi-
sation, and apply a 80 / 20% split of the full dataset for training and validation.

The CNN recovers the input values very well. To visualise this, we can look at
the relative error between target and predicted labels
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Proof of concept study li

Training info: We use the root mean square error as the loss function and
validation metric, Kaiming initialisation, Adam for gradient-descent optimi-
sation, and apply a 80 / 20% split of the full dataset for training and validation.

The CNN recovers the input values very well. To visualise this, we can look at
the relative error between target and predicted labels

1 G We did not include
E X i P =) observational biases and
" MRE =0.061gives | MRE = 0.039 gives assumed all simulated stars
ME = 0.01 kpc - ME=10 km/s are detectable! 216 pulsars
at h_=0.18 kpc *  ato, =265km/s have measured proper

motions, insuffi- cient for
200 400 600 this precision.

or. 1 [kms™']



Statistical inference

e Our initial study focused on deducing point estimates. However, we often do
not require exact estimates but knowledge of probable regions is sufficient.

e Thisis where Bayesian inference comes in: based on some prior knowledge 1
(8), a stochastic model and some observation x, we want to infer the most
likely distribution P(8|x) for our model parameters 8 given the data x. This is

encoded in Bayes' Theorem:

For complex simulators, the
prior 7 likelihood £ likelihood is defined

P(O) P(x|0) P(0) f P(x,z|0)dz . implicitly gn.d often
_ —_—_ intractable. This is overcome

fP(x|c9’)77(9’)d9’ with simulation-based
(likelihood-free) inference
(see e.g. Cranmer et al., 2020).

PO|z) =

posterior SN—~—

evidence




Simulation-based inference |

e To perform Bayesian inference for any kind of (stochastic) forward model
(e.g. those specified by simulators), we use the following approach:

1. sample 0, 2. run simulator for 6;

from prior 7(0) to produce observations

fori=1,...,N x; ~ p(z|0;)

4. use density estimator to 3. train a conditional

density estimator ¢,(6|x)

find approximate posterior
for empirical data, i.e., on simulated data to

p(B|xo) ~ qp(8]x0) predict parameters




Simulation-based inference |l

e Different approaches (all relying on deep learning) exist to learn a probabilis-
tic association between the simulated data and the underlying parameters.
These algorithms essentially focus on different pieces of Bayes’' theorem:

o Neural Posterior Estimation (NPE)
o Neural Likelihood Estimation (NLE)
o Neural Ratio Estimation (NRE)

We focus on NPE. This allows us to directly learn the posterior

distribution. In contrast, NLE and NRE need an extra (potentially
time consuming) MCMC sampling step to construct a posterior.

e All methods exist in sequential form (SNPE, SNLE, SNRE), which adds a fifth
step to workflow. Instead of sampling from the prior, we adaptively generate
simulations from the posterior. This typically requires fewer simulations.

IEEC’




Simulation-based inference |

e To perform Bayesian inference for any kind of (stochastic) forward model
(e.g. those specified by simulators), we use the following approach:

i 2. run simulator for 6;
> - to produce observations
x; ~ p(x|6;)

1. sample 0,
from prior 7(0)
fori=1,...,N

5. generate simulations

adaptively

4. use density estimator to 3. train a conditional

density estimator ¢,(6|x)

find approximate posterior
for empirical data, i.e., on simulated data to

p(B|xo) ~ qp(8]x0) predict parameters
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Workflow

With our complex population synthesis simulator,
we fix the dynamics to a fiducial model and focus
on the magneto-rotational evolution.

From our simulated populations, we generate summary O
statistics: density maps for three surveys in the PP-plane.

To perform the inference, we use the PyTorch package sbi
. Our trainable neural network has two parts:

o CNN . compresses the data into a latent vector.
o Mixture density network: our posterior is approximated by a mixture of
10 Gaussians components; we learn the means, stds and coefficients.

We initialise the CNN with Kaiming, use 89% of data for training, 10% for vali-
dation and 1% for testing, set the batch size to 8, and learning rate to 5 x 10,



https://www.mackelab.org/sbi/

Posterior distributions for test sample

e Asour conditional density esti-
mator is represented by a neural m
network, we can directly evaluate - !
the posterior distributions for a
given (test) observation.

e \We recover narrow, well-defined
posteriors for all five parameters
that typically contain the ground
truth (parameters used for the
forward simulation) at the 95%
credibility level.




Posterior distributions for observed population

e With our optimised neural
network, we can also infer the
posteriors for the pulsar
population recorded in our
three surveys and recover the
95% credibility intervals:

pp = 13.07°00% pp = —0.9810%

op = 0.43700 op = 0.54705




Outline

e Summary and outlook
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Take-home points

e Pulsar population synthe-
sis bridges gap between
known pulsars and the
invisible population.

Neutron stars are compact
remnants that emit pulsed
radiation across the electro-
magnetic spectrum.

It allows us to constrain
birth rates of different
neutron star classes and
birth properties.

Standard radio pulsars
constitutes the largest class
of observed neutron star.

Deep learning with neural networks is ideal to analyse
high-dimensional astrophysical data.

Simulation-based inference has opened up the possibility
for statistical inference for complex simulators.
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Outlook

e There are several directions that we have started to look into:

o)) grc 1EEC”] graber@ice.csic.es
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Outlook

e There are se
v [ ] [ ]
eral directions that we have started to |
o look into:

IMPROVING THE SIMULATOR

e Explore different assump-
tions on initial period and
magnetic—ﬁe\d distributions

Extend framework to model
also gamma-ray and X-ray
emission and predict the
multi-wave|ength emission




THANK YOU
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