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Population synthesis

● We can estimate the number of Galactic neutron stars

  ✕                     ＝

● We only detect a very small fraction of all neutron stars. Population synthesis 
bridges this gap focusing on the full population of neutron stars (e.g. Faucher- 
Giguère & Kaspi 2006, Lorimer et al. 2006, Gullón et al. 2014, Cieślar et al. 2020):
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CC supernova rate:
~ 2 per century

Galaxy age: 
~ 13.6 billion years

NS number:  
~ 2.8 x 108

model birth 
properties with 

Monte-Carlo 
approach

evolve 
properties 
forward in 

time

apply filters to 
mimic 

observational 
biases/limits

compare mock 
simulations to 

observations to 
constrain input
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Artistic 
illustration of 

the Milky 
Way (credit: 
NASA JPL)

Solve Newtonian equations of motion to determine positions and velocities.

Dynamical evolution 

● Neutron stars are born in star-forming 
regions, i.e., in the Galactic disk along the 
Milky Way’s spiral arms, and receive 
kicks during the supernova explosions.

●  We make the following assumptions:
○ Electron-density model (Yao et al., 

2017) + rigid rotation with T = 250 Myr.
○ Exponential disk with scale height 

hc = 0.18 kpc (Wainscoat et al., 1992).
○ Single-component Maxwell kick- 

velocity distribution with dispersion 
σk = 265 km/s (Hobbs et al., 2005).

○ Galactic potential (Marchetti et al., 2019).
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Top view of neutron-star 
evolution tracks in the Galaxy.

Solve Newtonian equations of motion to determine positions and velocities.
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Magneto-rotational evolution I 

● The neutron-star magnetosphere exerts a torque 
onto the star. This causes spin-down and 
alignment of the magnetic and rotation axes.

● Neutron star magnetic fields decay due to the 
Hall effect and Ohmic dissipation in the outer 
stellar layer (crust) (e.g., Viganó et al., 2013 & 2021).

● We make the following assumptions:
○ Initial periods follow a log-normal 

with μP and σP (Igoshev et al., 2022)
○ Initial fields follow a log-normal 

with μB and σB (Gullón et al., 2014)
○ Above τ ~ 106 yr, field decay follows 

a power-law with B(t) ~ B0 (1 + t/τ)α.
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Here, we vary the five 
uncertain parameters 
μP, μB, σP, σB and α.



Magneto-rotational evolution II 

● To model the magneto-rotational 
evolution, we numerically solve 
two coupled ordinary differen- 
tial equations for the period and 
the misalignment angle (Aguilera et 
al., 2008; Philippov et al. 2014). 

● We use results from 2D magneto- 
thermal simulations to determine 
the evolution of the magnetic field.

● This allows us to follow the stars’ P 
and P evolution in the PP-plane.
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Period period-derivative 
evolution tracks for 

μP = -0.6, σP = 0.3, 
μB = 13.25 and σB = 0.75.



Detecting pulsars

● We model the pulsar emission and beam 
geometry to check if a pulsar is detectable.

● We then compare our mock populations 
with three surveys from Murriyang:
○ Parkes Multibeam Pulsar Survey 

(PMPS): 1,009 isolated pulsars
○ Swinburne Parkes Multibeam 

Pulsar Survey (SMPS): 218 isol. p.
○ High Time Resolution Universe 

Survey (HTRU): 1,023 isol. pulsars
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Can we constrain birth properties by looking at 
a current snapshot of the pulsar population? 



Simulation-based inference (sbi)

● To perform statistical inference for complex simulators where the 
likelihood is not known explicitly, we use the following approach:
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Workflow

● We simulate 360,000 pulsar populations varying 
μP, μB, σP, σB and α. We then generate summary 
statistics: 3 density maps for surveys in PP-plane.

● To perform inference, we use PyTorch-based toolbox sbi (Tejero-Cantero et al., 
2020; https://www.mackelab.org/sbi/). Our trainable neural network has two parts:
○ CNN (see Ronchi et al., 2021): compresses the data into a latent vector.
○ Mixture density network: approximate the posterior by a mixture of 

10 Gaussians components; we learn the means, stds and coefficients. 
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The SBI algorithm we employ is based on Neural Posterior 
Estimation (NPE) (e.g., Papamakarios & Murray, 2016), 
which allows us to directly learn the posterior.

https://www.mackelab.org/sbi/


Posterior distributions for test sample

● As our conditional density esti- 
mator is represented by a neural 
network, we can directly evaluate 
the posterior distributions for a 
given (test) observation.

● We recover narrow, well-defined 
posteriors for all five parameters 
that typically contain the ground 
truth (parameters used for the 
forward simulation) at the 95% 
credibility level.
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Posterior distributions for observed population

● With our optimised neural 
network, we can also infer the 
posteriors for the pulsar 
population recorded in our 
three surveys and recover the 
95% credibility intervals:
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Robustness tests

● We varied hyperparameters of our DL approach to test the sensitivity of our 
inferred posteriors to those choices. We find similar training behaviour and 
optimisation losses and robust results for magnetic-field and period 
inferences but larger variations for the late-time power-law index α:

  graber@ice.csic.es    10

Test sample Observed sample
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Test sample Observed sample

Our simulator is (likely) missing physics to describe 
the late-time evolution of the pulsar magnetic field!



THANK YOU
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