

Simulation-based inference (sbi) for pulsar population synthesis

Dr. Vanessa Graber (graber@ice.csic.es)

in collaboration with Michele Ronchi, Celsa Pardo Araujo, and Nanda Rea SPINS-UK November 2023

Cassiopeia A supernova remnant (credit: NASA/CXC/SAO)

• We only **detect** a very **small fraction** of all neutron stars. Population synthesis bridges this gap focusing on the full population of neutron stars (e.g. Faucher-Ciguère & Kaspi 2006, Lorimer et al. 2006, Gullón et al. 2014, Cieślar et al. 2020):

Dynamical evolution

- Neutron stars are born in star-forming regions, i.e., in the Galactic disk along the Milky Way's spiral arms, and receive kicks during the supernova explosions.
- We make the following assumptions:

- Electron-density model (Yao et al., 2017) + rigid rotation with T = 250 Myr.
- **Exponential disk** with scale height h_c = 0.18 kpc (Wainscoat et al., 1992).
- Single-component Maxwell kickvelocity distribution with dispersion $\sigma_k = 265$ km/s (Hobbs et al., 2005).
- Galactic potential (Marchetti et al., 2019).

graber@ice.csic.es

Artistic illustration of the Milky Way (credit: NASA JPL)

Solve Newtonian equations of motion to determine positions and velocities.

Dynamical evolution

- Neutron stars are born in star-forming regions, i.e., in the Galactic disk along the Milky Way's spiral arms, and receive kicks during the supernova explosions.
- We make the following assumptions:

IEEC

CSIC

- Electron-density model (Yao et al., 2017) + rigid rotation with T = 250 Myr.
- **Exponential disk** with scale height h_c = 0.18 kpc (Wainscoat et al., 1992).
- Single-component Maxwell kickvelocity distribution with dispersion $\sigma_k = 265$ km/s (Hobbs et al., 2005).
- Galactic potential (Marchetti et al., 2019).

Top view of neutron-star evolution tracks in the Galaxy.

Solve Newtonian equations of motion to determine positions and velocities. $\ddot{\vec{r}}=-ec{
abla}\Phi_{\mathrm{MW}}$

Magneto-rotational evolution

- The neutron-star magnetosphere exerts a **torque onto the star**. This causes **spin-down** and **alignment of the magnetic and rotation axes**.
- Neutron star **magnetic fields decay** due to the Hall effect and Ohmic dissipation in the outer stellar layer (crust) (e.g., Viganó et al., 2013 & 2021).
- We make the following assumptions:

IEEC

CSIC

- Initial periods follow a log-normal with μ_{p} and σ_{p} (Igoshev et al., 2022)
- Initial fields follow a log-normal with μ_{B} and σ_{B} (Gullón et al., 2014)
- Above $\tau \sim 10^6$ yr, **field decay** follows a power-law with B(t) ~ B₀ (1 + t/ τ)^{α}.

$$\mathcal{P}(\log P_0) = rac{1}{\sqrt{2\pi}\sigma_P} \exp\left(-rac{\left[\log P_0 - \mu_P
ight]^2}{2\sigma_P^2}
ight)$$

Here, we **vary** the five uncertain parameters $\mu_{\rm P}$, $\mu_{\rm B}$, $\sigma_{\rm P}$, $\sigma_{\rm B}$ and α .

Magneto-rotational evolution II

- To model the magneto-rotational evolution, we numerically **solve two coupled ordinary differen**-**tial equation**s for the period and the misalignment angle (Aguilera et al., 2008; Philippov et al. 2014).
- We use results from **2D magnetothermal simulations** to determine the evolution of the magnetic field.
- This allows us to follow the stars' P and P evolution in the PP-plane.

IEEC

CSIC

Period period-derivative evolution tracks for μ_{p} = -0.6, σ_{p} = 0.3, μ_{B} = 13.25 and σ_{B} = 0.75.

Detecting pulsars

- We model the **pulsar emission and beam geometry** to check if a pulsar is detectable.
- We then compare our mock populations with three surveys from Murriyang:
 - Parkes Multibeam Pulsar Survey (PMPS): 1,009 isolated pulsars
 - Swinburne Parkes Multibeam
 Pulsar Survey (SMPS): 218 isol. p.
 - **High Time Resolution Universe Survey** (HTRU): 1,023 isol. pulsars

'EEC^{\$}

CSIC

Can we constrain birth properties by looking at a current snapshot of the pulsar population?

Simulation-based inference (sbi)

• To perform statistical inference for complex simulators where the likelihood is not known explicitly, we use the following approach:

Workflow

• We simulate **360,000 pulsar populations** varying $\mu_{p}, \mu_{B}, \sigma_{p}, \sigma_{B}$ and α . We then **generate summary statistics**: 3 density maps for surveys in PP-plane.

- To perform inference, we use **PyTorch-based toolbox sbi** (Tejero-Cantero et al., 2020; <u>https://www.mackelab.org/sbi/</u>). Our trainable neural network has two parts:
 - CNN (see Ronchi et al., 2021): compresses the data into a latent vector.
 - Mixture density network: approximate the posterior by a mixture of 10 Gaussians components; we learn the means, stds and coefficients.

The SBI algorithm we employ is based on Neural Posterior Estimation (NPE) (e.g., Papamakarios & Murray, 2016), which allows us to directly learn the posterior.

Posterior distributions for test sample

- As our conditional density estimator is represented by a neural network, we can directly evaluate the posterior distributions for a given (test) observation.
- We recover **narrow, well-defined posteriors** for all five parameters that typically contain the ground truth (parameters used for the forward simulation) at the 95% credibility level.

IEEC

CSIC

Posterior distributions for observed population

With our optimised neural network, we can also infer the posteriors for the pulsar population recorded in our three surveys and recover the 95% credibility intervals:

$$egin{aligned} \mu_B &= 13.07^{+0.07}_{-0.08} & \mu_P &= -0.98^{+0.25}_{-0.29} \ \sigma_B &= 0.43^{+0.03}_{-0.03} & \sigma_P &= 0.54^{+0.33}_{-0.25} \ lpha &= -1.77^{+0.35}_{-0.38} \ \mathcal{P}(\log P_0) &= rac{1}{\sqrt{2\pi}\sigma_P} \exp\left(-rac{\left[\log P_0 - \mu_P
ight]^2}{2\sigma_P^2}
ight) \end{aligned}$$

 $\sqrt{2\pi\sigma_P}$

IEEC CSIC erc MAGNESIA

<u>Robustness tests</u>

We varied hyperparameters of our DL approach to test the sensitivity of our inferred posteriors to those choices. We find similar training behaviour and optimisation losses and robust results for magnetic-field and period inferences but larger variations for the late-time power-law index α:

CSIC

<u>Robustness tests</u>

 We varied hyperparameters of our DL approach to test the sensitivity of our inferred posteriors to those choices. We find similar training behaviour and optimisation losses and robust results for magnetic-field and period inferences but larger variations for the late-time power-law index α:

THANK YOU

Cassiopeia A supernova remnant (credit: NASA/CXC/SAO)

