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Population synthesis

e \We can estimate the number of Galactic neutron stars

CC supernova rate: X Galaxy age: g NS number:
~ 2 per century ~13.6 billion years | ~ 2.8 x108

e \We only detect a very small fraction of all neutron stars. Population synthesis
bridges this gap focusing on the full population of neutron stars

model birth evolve apply filters to compare mock
properties with properties mimic simulations to

Monte-Carlo forward in observational observations to
approach time biases/limits constrain input
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Dynamical evolution

e Neutron stars are born in star-forming
regions, i.e, in the Galactic disk along the
Milky Way's spiral arms, and receive
kicks during the supernova explosions.

e We make the following assumptions:

o Electron-density model
+ rigid rotation with T = 250 Myr.

o Exponential disk with scale height
h.=0.18 kpc :

o Single-component Maxwell kick-
velocity distribution with dispersion
o, =265 km/s

o Galactic potential
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Magneto-rotational evolution |

e The neutron-star magnetosphere exerts a torque
onto the star. This causes spin-down and
alignment of the magnetic and rotation axes.

e Neutron star magnetic fields decay due to the
Hall effect and Ohmic dissipation in the outer
stellar layer (crust)

e We make the following assumptions:

o Initial periods follow a log-normal
with u,and o,

o Initial fields follow a log-normal
with p; and oy Here, we vary the five

o Above 1~10°yr, field decay follows uncertain parameters
a power-law with B(t) ~ B, (1 + t/1)% Mps g Op, 0 and a.




Magneto-rotational evolution li

e To model the magneto-rotational
evolution, we numerically solve
two coupled ordinary differen-
tial equations for the period and
the misalignment angle

N
~

e We use results from 2D magneto-
thermal simulations to determine
the evolution of the magnetic field.

[y
N

Spin period derivative [s/s]
=
w
logi0(Bd [Gauss])

e This allows us to follow the stars’ P
and P evolution in the PP-plane.
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Observed SMPS
Observed HTRU

Detecting pulsars P

°  90° 120° 150°

e \We model the pulsar emission and beam
geometry to check if a pulsar is detectable.

e We then compare our mock populations
with three surveys from Murriyang:

Observed PMPS

o Parkes Multibeam Pulsar Survey ey -
(PMPS): 1,009 isolated pulsars R

o Swinburne Parkes Multibeam oy
Pulsar Survey (SMPS):. 218 jsol. p.

o High Time Resolution Universe

Survey (HTRU): 1,023 isol. pulsars
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Can we constrain birth properties by looking at
a current snapshot of the pulsar population?




Simulation-based inference (sbi)

e To perform statistical inference for complex simulators where the
likelihood is not known explicitly, we use the following approach:

2. run simulator for 6;
1. sample 6; g to produce observations
from prior 7(0) ' x; ~ p(z|0;)
fori=1,...,N ’

. Us 51 imator : 4
4. use density estimator to 3. train a conditional

find approximate posterior

density estimator ¢,(6|x)

for empirical data, i.e., on simulated data to

p(0|zo) ~ q4(0|z0) predict parameters




Workflow

e We simulate 360,000 pulsar populations varying
Mo pB, op, Og and a. We then generate summary
statistics: 3 density maps for surveys in PP-plane.

e To perform inference, we use PyTorch-based toolbox sbi
. Our trainable neural network has two parts:

o CNN . compresses the data into a latent vector.
o Mixture density network: approximate the posterior by a mixture of
10 Gaussians components; we learn the means, stds and coefficients.

The SBI algorithm we employ is based on Neural Posterior
Estimation (NPE) (e.g.,, Papamakarios & Murray, 2016),
which allows us to directly learn the posterior.



https://www.mackelab.org/sbi/

Posterior distributions for test sample

e Asour conditional density esti-
mator is represented by a neural m
network, we can directly evaluate - !
the posterior distributions for a
given (test) observation.

e \We recover narrow, well-defined
posteriors for all five parameters
that typically contain the ground
truth (parameters used for the
forward simulation) at the 95%
credibility level.




Posterior distributions for observed population

e With our optimised neural
network, we can also infer the
posteriors for the pulsar
population recorded in our
three surveys and recover the
95% credibility intervals:
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pp = 13.07°00% pp = —0.9810%

op = 0.43700 op = 0.54705
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Robusthess tests

We varied hyperparameters of our DL approach to test the sensitivity of our
inferred posteriors to those choices. We find similar training behaviour and
optimisation losses and robust results for magnetic-field and period
inferences but larger variations for the late-time power-law index a:

Test sample Observed sample
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Robusthess tests

e \We varied hyperparameters of our DL approach to test the sensitivity of our
inferred posteriors to those choices. We find similar training behaviour and
optimisation losses and robust results for magnetic-field and period
inferences but larger variations for the late-time power-law index a:

Test sample Observed sample

Our simulator is (likely) missing physics to describe — - ==
the late-time evolution of the pulsar magnetic field!
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