COSPAR, E1.10
July 17, 2018




Background Glitches

B Glitches are sudden spin-ups caused by angular momentum transfer
from a crustal superfluid, decoupled from the lattice (and everything
tightly coupled) due to vortex pinning (Anderson and Itoh, 1975).

B Catastrophic vortex unpinning triggers the glitch and frictional
forces acting on the free vortices govern the neutron star’s
post-glitch response. Observations suggest that crust spin-up
after a glitch is very fast (Dodson et al., 2007; Palfreyman et al., 2018).

B Within hydrodynamical models, this recoupling is captured via a
dimensionless mutual friction coefficient B. It is directly connected
to the mesoscopic dynamics, because a single vortex experiences a
resistive force fies = pskRAv and B = R/(1 + R?).
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Background Coupling mechanisms

B Different processes affect vortex dynamics in the crust and the core:

> phonon excitations (Jones, 1990)  » scattering of electrons off the

» Kelvin wave excitations (Epstein vortex magnetic field (Alpar et al.,

and Baym, 1992; Jones, 1992) 1984; Andersson et al., 2006)

» electron quasi-particle scattering * Kelvin wave excitations (Link,

(Feibelman, 1971) 2003)

B Focus on Kelvin wave excitations in the crust, dominating the initial
recoupling (if vortex-nucleus velocity is Av > 10° cms™' (Jones, 1992)).

B We reanalyse the works of Epstein and Baym (1992) and Jones (1992),
using a simple argument to understand discrepancies between both
formalisms and calculate the drag R for realistic crust parameters.
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Coupling Kelvin waves

B In the absence of forces, a vortex supports Kelvin waves with
angular frequency wy = Tk?/psk = hk?/2u(k) (Thomson, 1880),
with tension T and effective mass pu(k) ~ —2my/ In k€.

B Vortex-nucleus interactions excite waves with wave numbers
k < ke = (2uAv/hl)*/? = determine the power p transferred into
Kelvin waves and relate it to the resistive force, fi.s = p/Av.

B Epstein & Baym and Jones make different assumptions about p and
the interaction potential including the typical interaction scale /:

-~ E E _ s
Egg(s) = (1+52/R§1)4+1+52/R§1’ Ey(s) = Epexp (—@>7 (1)

where s is the separation, E; (£) a short-range (long-range) interaction
contribution, Rx the nuclear radius and ¢ the coherence length.
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Coupling Drag coefficients

B Drag coefficients depend on the relative vortex-nucleus velocity, but
E, and Av are connected by a mesoscopic force balance, Av ~ fyin/psk
~ E,/lapsk, for a pinning force fyn per unit length and lattice spacing a.

B Correcting several errors in Epstein and Baym (1992) and accounting for a
reduction factor § due to averaging the microscopic pinning interaction
over a mesoscopic vortex length scale (Seveso et al., 2016), we find

= 12 12
(V2 (B0 Ry ~ Loy (B0 A
R ~ 2.8 (h) (ps/ﬂ 23727 Ry~ 2\/m (ﬁ) pPsk £’

()

with EZ ~ E? + E|E, + 0.5E7 in Epstein and Baym's formalism.
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Coupling Density-dependence

B We use the crustal composition of Negele and Vautherin (1973) and
pinning interaction parameters from Epstein and Baym (1992) and
Donati and Pizzochero (2006) to calculate R in the inner crust.

B The bottom of the crust carries the majority of the crustal mass.
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Figure 1: Mutual friction strength for kelvin wave coupling as a
function of (left) density and (right) relative overlying mass fraction.
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Three components

B Decompose the neutron star into crust superfluid, core superfluid
and a non-superfluid ‘crust’ component. The latter two rotate rigidly
and are coupled via a constant mutual friction coefficient Beore.

B Neglecting entrainment for simplicity, the equations of motion are

. 09
st =B |:2st + FT;] (chust - st)a (3)
Qcore = 2Bcorchore (chust - Qcore)y (4)

Next Icore ~
chust = -5 — Qcore
Icrust Icrust Icrust

/pfzﬂsf dv. (5)

B Relate p and 7 in the crust by solving the TOV equations for a
realistic EoS to obtain B(F) and integrate (3)-(5) in cylindrical
geometry for Vela pulsar (Qcruss(0) ~ 70 Hz, AQerie ~ 1072 Hz).
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Results Differential rotation

B Solve equations for two fiducial crust-core couplings: Beore ~ 5 x 107°
(electron-vortex scattering) and Beore ~ 1072 (Kelvin wave excitations).

B The superfluid rotates differentially due to the B(7)-dependence. In the
outer layers, B is strongest and the superfluid couples within ~ 100 ms.
Eventually, the superfluid has transferred all excess angular momentum
and spun down to a new steady state, where all components corotate.

70347 1 =0 Beore 5% 1077 70347 1-os Beore 2 1072

70.346

TOBAG] e
70.345
70344

70.343

Qq(t, 7) (rad/s)

70.342

70.341

70.34 t=48s 70.34 t=18s

104 10.3 10.2 10.1 10.0 10.4 10.3 10.2 10.1 10.0
7 (km) 7 (km)

Figure 2: Qg as function of radius and time calculated for drag profile (A) and two crust-core couplings.
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Results Crustal evolution |

B We compare different friction profiles by computing the change in
crust frequency Av. The glitch rise shape depends crucially on the
relative strength of the crust and core mutual friction.

B For Beore ~ 5 x 1072: crustal coupling is faster than core coupling,
creating a characteristic overshoot feature. The onset of crust-core
coupling is visible as a break in the phase shift ¢.
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Figure 3: Change in crustal frequency Av(t) = [Qcrust(t) — Qcrust(0)]/27 and phase shift ¢ = [ Av dt with time.
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Results Crustal evolution Il

B For Beore ~ 1072: crustal coupling is slower than core coupling,
causing the glitch rise to be monotonic in time. The onset of
crust-core coupling is not visible in the phase shift ¢.
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Figure 4: Change in crustal frequency Av(t) = [Qcrust(t) — Qecrust(0)]/27 and phase shift ¢ = [ Av dt with time.
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Results Data comparison |

]
=

B First single-pulse observations of a glitch in the Vela pulsar (Palfreyman
et al., 2018) allow a comparison between the data and our predictions.

B Model timing residuals At ~ —27¢/Qcust(0) are compared to observed
residuals. We include a shift Aty ~ 0.22ms at the time of the glitch.
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Figure 5: Comparison between theoretical (left) timing residuals and (right) cumulative
residuals for Beore & 5 X 10~5 and observations of the 2016 Vela glitch.
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Results Data comparison Il

B Analyse how sensitive the glitch rise is to Boore for crustal profile (A):
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Figure 6: Comparison between the 2016 Vela glitch data and theoretical predictions
calculated for drag profile (A) and a varying crust-core mutual friction strength Beore-
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Conclusions

B |n order to constrain microphysics of neutron stars, we need to
understand the connection between the macroscopic observables
and microphysics = develop a predictive glitch rise model.

B Combine realistic Kelvin-wave profiles in the crust with a simple
treatment of the core mutual friction and implement both in a
three-component neutron star framework = glitch shape depends
crucially on the relative strength between B and Beore.

B Comparison between our models and the first pulse-to-pulse glitch
observations suggest strong crustal combined with weak core
mutual frictional = i.e. B > 1072 and 3 X 107° < Beore < 1074
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