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Neutron Stars Structure

� The interior structure is complex
and influenced by the (unknown)
equation of state. However, there
is a canonical understanding.

� After ∼ 104 years neutron stars
are in equilibrium and have
temperatures of 106 − 108 K. They
are composed of distinct layers.

� For our purposes, we separate
neutron stars into a solid crust
and a fluid core, containing three
distinct superfluid components.

Figure 1: Sketch of the neutron star interior.
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Neutron Stars Quantum condensates

� Neutron stars are hot compared to low-temperature experiments on
Earth, but cold in terms of their nuclear physics (Migdal, 1959).

� Neutrons and protons are fermions and can become unstable to
Cooper pair formation due to an attractive contribution to the
nucleon-nucleon interaction potential.

� The pairing process is described within the standard microscopic
BCS theory of superconductivity (Bardeen, Cooper & Schrieffer, 1957).

� Compare the equilibrium to the nucleons’ Fermi temperature:

TF = k−1B EF ∼ 1012 K� 106 − 108 K. (1)

Neutron star matter is strongly influenced by quantum mechanics!
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Neutron Stars Phase transition temperatures

� Detailed BCS calculations provide the pairing gaps ∆, which are
associated with the critical temperatures Tc for the superfluid
and superconducting phase transitions.

Figure 2: Left: Parametrised proton (singlet) and neutron (singlet, triplet) energy gaps as a function
of Fermi wave numbers (Ho, Glampedakis & Andersson, 2012). Right: Critical temperatures of

superconductivity/superfluidity as a function of the neutron star density. The values are computed for
the NRAPR equation of state (Steiner et al., 2005; Chamel, 2008).
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SF & SC Basics

� Superfluids flow without viscosity, while
superconductors have vanishing electrical
conductivity and exhibit Meissner effect.

� Both states involve large numbers of
particles condensed into the same
quantum state, characteristic for
macroscopic quantum phenomena.

� Most of our understanding of superfluidity
and superconductivity in neutron stars
originates from laboratory counterparts.

Figure 3: Superfluid helium creeps up
the walls to eventually empty the bucket.
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SF & SC Quantised vorticity

� Superfluids can be characterised by macroscopic wave functions
Ψ = Ψ0 e

iϕ that satisfy the Schrödinger equation. Using standard
QM formalism, one can determine a superfluid velocity

vS ≡
jS
ρS

=
~
mc
∇ϕ, ⇒ ω ≡ ∇× vS = 0. (2)

Figure 4: Envisage vortices
as tiny, rotating tornadoes
(NOAA Photo Library).

� Superflow is irrotational: superfluids can only
rotate by forming a regular array of vortices.

� Each microscopic vortex carries a quantum of
circulation κ = h/2m ≈ 2.0× 10−3 cm2 s−1.

� Vortices arrange themselves in a regular array
(Abrikosov, 1957) and their circulation mimics
solid-body rotation on large scales.

RTG Colloquium graber@ice.csic.es 8



SF & SC Mutual friction

Figure 5: Regular vortex array.

� Averaged vorticity and vortex area density are

ω = 2Ω = Nvκẑ , Nv ≈ 6.3× 105
(

10 ms
P

)
cm−2.

(3)
� Angular momentum can be changed by creating

(spin-up) or destroying (spin-down) vortices.

� The vortices interact with the viscous fluid component causing
mutual friction (Hall & Vinen, 1956; Alpar, Langer & Sauls, 1984). For
Ω = Ω Ω̂, the vortex-averaged drag force in the core is given by

Fmf = 2Bρn Ω̂× [Ω× (vn − v e)] + 2B′ρn Ω× (vn − v e) . (4)

� The coefficients B and B′ are calculated from mesoscopic coupling
physics for a single vortex and then averaged over the full array.
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SF & SC (The old) type-II picture

Figure 6: Type-II and intermediate type-I
state (Brandt & Essmann, 1987).

� Due to high conductivity, the magnetic flux
cannot be expelled from their interiors ⇒
neutron stars do not exhibit Meissner effect
and are in a metastable state (Baym, Pethick

& Pines, 1969; Ho, Andersson & Graber, 2017).

� State depends on characteristic lengthscales and standard considera-
tions give κ = λ/ξft > 1/

√
2 in the outer core, i.e., a type-II state with

Hc1 = 4πEft/φ0 ∼ 1014 G, Hc2 = φ0/(2πξ2ft) ∼ 1015 G. (5)

� Each fluxtube carries a flux quantum φ0 = hc/2e ≈ 2.1× 10−7 Gcm2.
All flux quanta add up to the total magnetic flux, so that the averaged
magnetic induction is related to the fluxtube area density Nft:

B = Nftφ0, → Nft ≈ 4.8× 1018
(
B/1012 G

)
cm−2. (6)
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SF & SC NS two-fluid model

� Macroscopic Euler equations for superfluid neutrons and charged fluid
in zero-temperature limit (Glampedakis, Andersson & Samuelsson, 2011)(

∂t + v j
n∇j

) [
v i
n + εnw

i
np
]

+∇i Φ̃n + εnw
j
pn∇ivn

j = f imf + f imag,n, (7)(
∂t + v j

p∇j

) [
v i
p + εpw

i
pn

]
+∇i Φ̃p + εpw

j
np∇ivp

j = −nn

np
f imf + f imag,p, (8)

with w i
xy ≡ v i

x − v i
y. Modified by new force terms, f imf and f imag,x, due

to vortices/fluxtubes and entrainment, εx (Andreev & Bashkin, 1975).

� Supplemented by continuity equations and Poisson’s equation,

∂tnx +∇i (nxv
i
x) = 0, ∇2Φ = 4πGρ, (9)

and an evolution equation for the magnetic induction B.
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SF & SC B-fields - Induction equation

� Magnetic field evolution should be related to the mechanisms affecting
the fluxtubes’ motion, but these are rather poorly understood (Muslimov &

Tsygan, 1985; Graber, 2017, e.g.).

� It is possible to use techniques of classical magnetohydrodynamics to
derive a superconducting induction equation (Graber et al., 2015). For
the standard coupling mechanism (electron scattering), one finds:

∂tB
i ≈ εijk∇j

[
εklmv

l
pB

m − κB

2π
m

m∗p

(
B′B̂ l∇l B̂k + BεklmB̂ l B̂ s∇s B̂

m
)]
, (10)

with inertial, conservative (Hall-like) and dissipative (Ohmic-like) term.

� The corresponding timescales are too slow to drive field evolution on
observable timescales, i.e., τdiss ≈ 109 yrs and τcons ≈ 1011 yrs.
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SF & SC Connection to Lab Systems

� Neutron stars contain (at least) three
superfluids, characterised by large particle
numbers condensed into the same
quantum state. Theoretical modelling is
difficult ⇒ use laboratory counterparts
to understand them better.

� While we cannot replicate their extreme
conditions, we can use the connection to
known laboratory analogues to study
specific neutron star characteristics.

� Many promising examples to explore this
interface (Graber, Andersson & Hogg, 2017). Figure 7: Cassiopeia A supernova remnant

(NASA, JPL-Caltech, STScI, CXC, SAO).
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Glitches Basics

� Glitches are sudden spin-ups likely caused by angular momentum
transfer from a crustal superfluid, decoupled from the lattice (and
everything tightly coupled) due to vortex pinning (Anderson & Itoh, 1975).

Figure 8: Sketch of an idealised glitch.

� Catastrophic unpinning triggers glitch
and friction acting on free vortices
govern post-glitch response.

� Models of long-term behaviour have
been compared to observed exponen-
tial relaxation timescales to analyse
crustal pinning forces and tempera-
tures (Alpar et al., 1984, e.g.).

� Observations suggest that the crust spin-up after a glitch is very fast
(Dodson, Lewis & McCulloch, 2007; Palfreyman et al., 2018).
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Glitches Modelling

� To model glitches, decompose star into rigidly rotating components
coupled by friction ⇒ predicted evolution depends on number of com-
ponents and their coupling strengths (Graber, Cumming & Andersson, 2018).

� First single-pulse observations of a Vela glitch (Palfreyman et al., 2018) allow
comparing data and predictions ⇒ we use a Bayesian framework to fit
models to the data (Ashton et al., 2019) to constrain the glitch rise time to
. 12.6 s and find evidence for an overshoot and pre-glitch slow-down.
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Figure 9: Glitch predictions (left) and constant ν fitted with 200 s-long sliding window to 2016 glitch (right).
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Glitches Helium II spin-up

Figure 10: Schematic setup of the
helium II spin-up experiments
(Tsakadze & Tsakadze, 1980).

� First (and only) systematic analysis of
rotating helium II by Tsakadze & Tsakadze
(1980), shortly after first observations of
glitches in the Vela and Crab pulsar.

� Validate presence of superfluid compo-
nents in neutron stars by measuring
relaxation timescales after initial
changes in the container’s rotation.

� Performed for various temperatures, vessel
configurations and rotational properties.

� Model comparison is hard (Reisenegger,

1993; van Eysden & Melatos, 2011).
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Glitches Helium II glitches

Figure 11: Sketch of an idealised neutron star glitch. Figure 12: Measurement of a laboratory glitch.

� Glitches are not only detected in neutron stars, but have also been
observed in helium experiments (Tsakadze & Tsakadze, 1980). This supports
the idea that they are caused by an internal superfluid reservoir.

� There is only one (!!) observation of a helium II glitch. Updated
experiments could help to understand aspects such as the trigger.
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Glitches Crust-core interface

� One of the important unknowns in modelling glitches is the role of
the crust-core interface, i.e., how do the two superfluid regions
transition into each other ⇒ Can we investigate this with helium?

� Helium-3 becomes superfluid below
3mK. The transition is different to
bosonic helium II because helium-3
atoms are fermions and have to form
Cooper-pairs as expected for the
neutron star interior.

� The pairing occurs in a spin-triplet,
p-wave state: the Cooper pairs have
internal structure resulting in 3
superfluid phases (Vollhardt, 1998). Figure 13: Schematic phase diagram of helium-3.
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Glitches Helium-3 interfaces

� B-phase behaves similar to helium II and crustal superfluid; A-phase
exhibits anisotropic behaviour and resembles core neutron superfluid.

Figure 14: Vortex-line simulation for spin-down
of two-phase helium-3 (Walmsley et al., 2011).

� Study vortices across an interface with
rotating two-phase samples (different B,
B′) using NMR measurements and modern
vortex-line simulations (Walmsley et al., 2011).

� Interface strongly modifies dynamics:
I Vortex sheet formation
I Vortex tangle forms in B-phase,

reconnections increase dissipation
I Differential rotation

� Interface can become unstable to Kelvin-
Helmholtz instability (Finne et al., 2006).
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Core SC Superconductors

Figure 15: Intermediate state of type-I and type-II phases (Brandt & Essmann, 1987; Essmann, 1971).

� For laboratory systems, experiments and numerical calculations comple-
ment each other ⇒ account for pinning defects, bending, long-range re-
pulsion and reconnections in time-dependent Ginzburg-Landau models.

� Our understanding of macroscopic NS superconductivity is based on
time-independent equilibrium and single-component considerations. It
is unclear what happens as the star cools below Tc and when entrainment
is included ⇒ how can we better understand the phase transition?
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Core SC SC formation

� In the outer core, initially, only protons are superconducting (neutrons
remain normal), so we model the formation of the superconducting
phase with a single-component time-dependent Ginzburg-Landau model.

� Study the dynamics of the phase transition under different circum-
stances in analogy to numerical experiments of laboratory systems (Liu,

Mondello & Goldenfeld, 1991; Frahm, Ullah & Dorsey, 1991).

Figure 16: Evolution of the magnetic field in a type-I system in the nucleation regime.
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Core SC Micro-scale model

� Nucleons are strongly coupled via non-dissipative entrainment, which
affects the superconductor ⇒ use a zero-temperature, two-component
Ginzburg-Landau model and extend earlier works to be Galilean invariant.

� Aim is to construct phase diagrams and deduce the protons’ state for
different EoSs as a function of the density (Wood & Graber, in preparation).

Figure 17: Phase diagrams for a one-component superconductor, for different values of the Ginzburg-Landau
parameter, κ. The experiment with an imposed external field, |H|, in nondimensional units is shown on the left,

while the right panel shows the phase transitions in the experiment with an imposed mean flux, B.
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Core SC Preliminary results

� Entrainment causes behaviour similar
to type-1.5 superconductivity due
to fluxtube repulsion on short scales
and attraction on large scales ⇒ when
imposing B, mixed states appear.

� For typical EoSs, the outer core is no
longer a type-II superconductor but a
type-1.5 system ⇒ magnetic flux is
irregularly distributed and retained.

Figure 18: Magnetic decoration image of
multi-band superconductor

Mg2B (Moshchalkov et al., 2009).

� This could affect the neutron star’s large-scale magnetism, but to really
translate between our microscale model and a magneto-hydrodynamical
description, we need to find a way to include the normal electrons.
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Conclusions

� Neutron stars are expected to contain (at least) three distinct
quantum condensates that influence the stars’ macroscopic
behaviour. The majority of our knowledge of these superfluids
originates from theoretical work on their laboratory counterparts.

� As significant progress has been made in understanding laboratory
condensates in recent years, there are many exciting ways to
combine both fields and study neutron star astrophysics in light
of terrestrial experiments and theoretical frameworks.

� Promising approaches include the study of pulsar glitches, which
are a direct manifestation of macroscopic neutron superfluidity, and
analysing the microphysics of the superconducting phase
transition and the impact on the neutron star magnetism.
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Thank you.
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Appendix PṖ-diagram

� The PṖ-diagram is a great diagnostic tool to analyse pulsar physics.
Characteristic ages and magnetic field strengths are estimated as

τc ∼ 0.5PṖ−1, B ∼ 3.2× 1019(PṖ)1/2 G. (11)

Figure 19: PṖ-diagram for
∼ 2500 known radio pulsars

from the ATNF pulsar
catalogue, which can be found
at http://www.atnf.csiro.au/

people/pulsar/psrcat/.
Different classes of neutron

stars are highlighted including
standard rotation-powered

pulsars, magnetars and binary
pulsars.
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Appendix NS mutual friction

� Different processes affect vortex dynamics in the crust and the core:
I phonon excitations (Jones, 1990)

I Kelvin wave excitations (Epstein &
Baym, 1992; Jones, 1992)

I electron quasi-particle scattering
(Feibelman, 1971)

I electrons scatter off vortex field
(Alpar, Langer & Sauls, 1984;
Andersson, Sidery & Comer, 2006)

I Kelvin wave excitations (Link,
2003)
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Figure 20: Mutual friction strength in the crust (left) for the composition of Negele & Vautherin (1973) and
realistic vortex-lattice interaction parameters (Epstein & Baym, 1992; Donati & Pizzochero, 2006) and core

(right) for NRAPR (Steiner et al., 2005) and parametrised neutron gaps (Ho, Glampedakis & Andersson, 2012).
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Appendix Glitch model

� Decompose the neutron star into crust superfluid, core superfluid and a
non-superfluid ‘crust’ component. The latter two rotate rigidly and are
coupled via a constant mutual friction coefficient Bcore ≈ 5× 10−5.

� Neglecting entrainment for simplicity, the equations of motion are

Ω̇sf = Bcrust

[
2Ωsf + r̃

∂Ωsf

∂ r̃

]
(Ωcrust − Ωsf), (12)

Ω̇core = Bcore2Ωcore (Ωcrust − Ωcore), (13)

Ω̇crust = − Next

Icrust
− Icore

Icrust
Ω̇core −

1
Icrust

∫
ρr̃ 2Ω̇sf dV . (14)

� Relate ρ and r̃ in the crust by solving the TOV equations for a realistic
EoS to obtain Bcrust(r̃) and integrate (12)-(14) in cylindrical geometry for
Vela pulsar parameters (Ωcrust(0) ≈ 70 Hz, ∆Ωcrit ≈ 10−2 Hz) for 120 s.
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Appendix Crustal evolution

� Compare different friction profiles by computing the change in crust
frequency ∆ν. Glitch-rise shape depends crucially on relative strength
of crust and core mutual friction (Graber, Cumming & Andersson, 2018).

� With Bcore ∼ 5× 10−5, the crust coupling is faster than core coupling,
creating a characteristic overshoot feature. The onset of crust-core
coupling is visible as a break in the phase shift φ and timing residuals.
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Figure 21: Change in crustal frequency ∆ν(t) = [Ωcrust(t)− Ωcrust(0)]/2π and phase shift φ =
∫

∆ν dt.
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Appendix Glitch data comparison I

� First single-pulse observations of a glitch in the Vela pulsar (Palfreyman

et al., 2018) allow a comparison between the data and predictions.

� Use a Bayesian framework to fit phenomenological models of the star’s
rotation frequency to the Vela pulsar data (Ashton et al., 2019). This allows
to constrain the glitch rise time to less than 12.6 s with 90% confidence.

Figure 22: Posterior
distribution for the rise
time of the glitch. The
rise time is the free time

scale in a
two-component neutron
star model. The dark

shaded region marks the
90% confidence interval.
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Appendix Glitch data comparison II

� We find definite evidence for an overshoot and fast decay timescale
∼ 55 s ⇒ requires three components in a body-averaged formalism.

� We find evidence for a slow-down of the star’s rotation immediately
prior to the glitch ⇒ some noise process may trigger the glitch by
causing a critical lag between crustal superfluid and the lattice.

Figure 23: Frequency evolution
during the 2016 Vela glitch: constant

frequency model fitted with
200 s-long sliding window with 90%

confidence interval (grey) plus
maximum-likelihood fits for the

overshoot (blue) and
slow-down+overshoot (red) models.

Dashed curves show the raw
frequency evolution, while the solid

ones show the time-averaged
frequency evolution.
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Appendix Galilean invariant GL model

� With entrainment, velocity-dependent terms in energy density must read

Fvel = 1
2ρp|Vp|2 + 1

2ρn|Vn|2 − 1
2ρ

pn|Vp − Vn|2 , (15)

where ρp and ρn are the true mass densities, the coefficient ρpn < 0
determines the strength of entrainment (Andreev & Bashkin, 1975) and Vp,n

are superfluid velocities related to the canonical momenta.

� In the mean-field framework, entrainment first enters at 4th order in ψn,p

and 2nd order in their derivatives, i.e., we require a linear combination of

|ψx |2|∇ψy |2, ψxψy∇ψ?x ·∇ψ?y , ψxψ
?
y∇ψ?x ·∇ψy , ψ

?
xψ

?
y∇ψx ·∇ψy , (16)

where x , y ∈ {p, n}. The result can be linked to the Skyrme model, to
deduce equation-of-state dependent coefficients.
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Appendix Helmholtz free energy density

� Total Helmholtz free energy density is obtained by adding entrainment
terms to the usual free energy of a two-component superfluid, and
introducing the magnetic vector potential A by minimal coupling:

F [ψp, ψn,A] = F0 − µp|ψp|2 − µn|ψn|2 +
gpp

2
|ψp|4 +

gnn

2
|ψn|4 + gpn|ψp|2|ψn|2

+
}2

4mu

∣∣∣∣(∇− 2ie
}c

A
)
ψp

∣∣∣∣2 +
}2

4mu
|∇ψn|2 +

1
8π
|∇× A|2

+ h1

∣∣∣∣(∇− 2ie
}c

A
)

(ψ?nψp)

∣∣∣∣2 + 1
2 (h2 − h1)∇(|ψp|2) ·∇(|ψn|2)

+ 1
4h3

(∣∣∇(|ψp|2)
∣∣2 +

∣∣∇(|ψn|2)
∣∣2) , (17)

where F0 is an arbitrary reference level and proton Cooper pairs have
charge 2e. µp and µn are the chemical potentials, while gpp and gnn define
the self-repulsion of the condensates, and gpn their mutual repulsion.
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Appendix Thought experiments

� To find the ground state for our system in the presence of an imposed
magnetic field, we can perform two distinct experiments: we control (i)
the magnetic flux density, B = ∇× A, by imposing a mean or net
magnetic flux, or (ii) the thermodynamic external magnetic field, H.

� In the first case, we minimise the Helmholtz free energy, F = 〈F 〉,
where the angled brackets represent some kind of integral over our
physical domain ⇒ closely approximates the conditions in the neutron star
core, which becomes superconducting as the star cools in the presence of
pre-existing magnetic field. The ground state can be inhomogeneous.

� In the second case, we minimise the dimensionless Gibbs free energy,
G = F − 2κ2H · 〈B〉. In an unbounded domain, the ground state is
guaranteed to be homogeneous, and the phase diagram simpler.
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Appendix Euler-Lagrange equations

� Whether we work with F or G, we obtain the same equations of motion:

κ2∇× (∇× A) = =
{
ψ?p(∇− iA)ψp +

h1
ε
ψnψ

?
p(∇− iA)(ψ?nψp)

}
, (18)

∇2ψn = R2(|ψn|2 − 1)ψn + α(|ψp|2 − 1)ψn

− h1ψp(∇ + iA)2(ψ?pψn)

− ψn∇2
(
h2 − h1

2
|ψp|2 +

h3
2ε
|ψn|2

)
, (19)

(∇− iA)2ψp = (|ψp|2 − 1)ψp +
α

ε
(|ψn|2 − 1)ψp

− h1
ε
ψn(∇− iA)2(ψ?nψp)

− ψp∇2
(
h2 − h1

2ε
|ψn|2 +

h3
2
|ψp|2

)
. (20)
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Appendix Energy per flux quantum

� We solve the Euler-Lagrange equations with quasi-periodic boundary
conditions (Wood et al., 2019), which involves specifying the domain size
Lx × Ly , and the number N of magnetic flux quanta within the domain
⇒ different choices allow comparing square and hexagonal lattices.

� The Helmholtz free energy per magnetic flux quantum per unit length is
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Figure 24: Helmholtz free energy per flux
quantum per unit length, F , as a function
of the area per magnetic flux quantum,

a = 2π/B, for the NRAPR EoS at
nb = 0.2831/fm3. The energy in the

square (long-dashed, cyan) and hexagonal
(solid, blue) lattice states matches
smoothly onto the energy of the

non-superconducting state (short-dashed,
purple) at a ' 12.9.
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Appendix Inhomogeneous ground-states

� Choosing a sufficiently large domain, and values of a, we otain examples
of inhomogeneous ground states ⇒ for NRAPR at nb = 0.2831/fm3

with a = 14.5 plus N = 24 (left) and a = 52 plus N = 14 (right).

� In both cases, the aspect ratio is
√

3 and the pure hexagonal lattice a
possible state but not the ground state ⇒ F is lower than for pure lattice.

Figure 25: Inhomogeneous groundstates for NRAPR. Brightness and hue indicate density and phase of the
proton order parameter, ψp, respectively. The left panel shows a mixture of non-superconducting protons and
hexagonal fluxtube lattice, while the right one is mixture of Meissner state and hexagonal fluxtube lattice.
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Appendix Example phase diagrams

� When mixed states are present, second-order phase transitions are
replaced by first-order transitions at Hc1′ < Hc1 and Hc2′ > Hc2.

� We can determine critical fields (partially semi-analytically, partially
numerically) and construct phase-diagrams of the superconducting state
throughout the neutron star core. For the LNS equation of state:

Figure 26: Phase diagrams for LNS. There are inhomogeneous regimes of the Meissner/Non-superconducting
(M/N), Meissner/Fluxtube (M/F) and Fluxtube/Non-superconducting (F/N) states.
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Appendix Ultra-cold gases

� A BEC of weakly-interacting bosons was first realised by cooling
Rubidium atoms to T ∼ nK (Anderson et al., 1995; Davis et al., 1995),
and the superfluid transition observed shortly after (Matthews et al.,

1999; Madison et al., 2000).

� Although the field is relatively young,
ultra-cold gases provide many
possibilities to study superfluidity:
e.g. fermionic gases, two-component
systems, optical lattices, etc.

� Very simple advantage: absorption
imaging of clouds is a great tool to
study behaviour of individual vortices. Figure 27: Vortex array in a rotating, dilute BEC

of Rubidium atoms (Engels et al., 2002).
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Appendix GPE modelling

Figure 28: Snapshots of superfluid density during the spin-down of a BEC (Warszawski & Melatos, 2012).

� Time evolution of the Gross-Pitaevskii equation describes vortex
motion ⇒ use this approach to study the pinned crustal superfluid
in neutron stars (Warszawski & Melatos, 2012).

� Collective vortex motion in the presence of pinning potential can cause
glitch-like events ⇒ study the unknown trigger and glitch statistics.

� Two-component GP formalisms have been used to study neutron star
core properties (Alford & Good, 2008; Drummond & Melatos, 2017, e.g.).
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