

Simulationbased inference for pulsar population synthesis

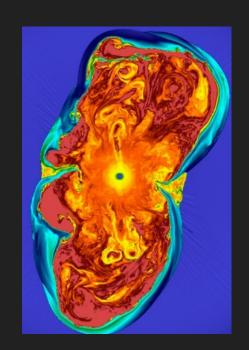
Dr. Vanessa Graber

in collaboration with Michele Ronchi, Celsa Pardo Araujo, and Nanda Rea

Southampton Gravity Seminar 6 March 2025

Cassiopeia A supernova remnant (credit: NASA/CXC/SAO)

Outline


- Neutron stars
- Pulsar population synthesis
- Machine learning and sbi
- Inference results
- Summary

Cassiopeia A supernova remnant (credit: NASA/CXC/SAO)

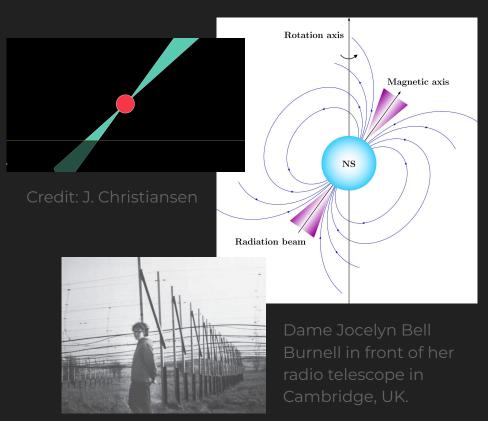
Neutron-star formation

- Neutron stars are one of three types of compact remnants, created during the final stages of stellar evolution.
- When a massive star of 8 25 solar masses runs out of fuel, it collapses under its own gravitational attraction and explodes in a supernova.
- During the collapse, electron
 capture processes (p + e⁻ → n + v_e)
 produce (a lot of) neutrons.

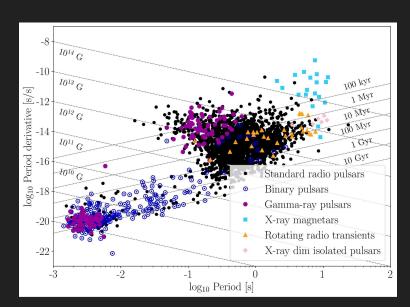
mass: 1.2 - 2.1 M₋₋

radius: 9 - 15 km

density: 10¹⁵ g/cm³


Snapshot of a 3D core-collapse supernova simulation (Mösta et al., 2014)

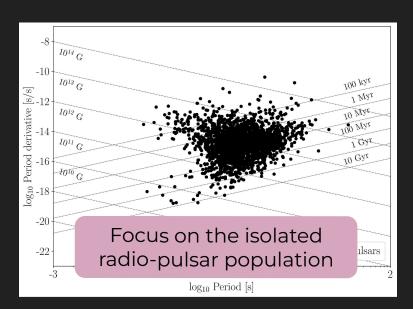
Lighthouse radiation


Sketch of the neutron-star exterior.

- Neutron stars have extreme magnetic fields between 10⁸
 10¹⁵ G. For comparison, the Earth's magnetic field is 0.5 G.
- Because rotation and magnetic axes are misaligned, neutron stars emit radio beams like a lighthouse.
- These pulses can be observed with radio telescopes. This is how neutron stars were first detected and why we call them pulsars.

The neutron-star zoo

Period period-derivative plane for the pulsar population. Data taken from the ATNF Pulsar Catalogue (Manchester et al., 2005)


- Pulsars are very precise clocks and we time their pulses to measure rotation periods P and derivatives P.
- We now observe neutron stars as pulsars across the electromagnetic spectrum.

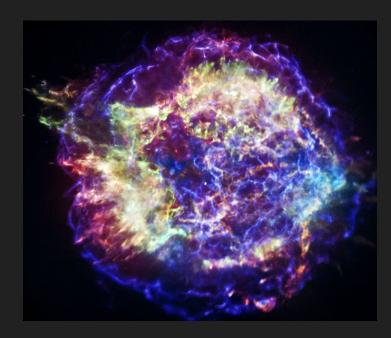
~ **3,500 pulsars** are known to date

 Grouping neutron stars in the PP-plane according to their observed properties serves as a diagnostic tool to identify different neutron-star classes.

The neutron-star zoo

Period period-derivative plane for the pulsar population. Data taken from the ATNF Pulsar Catalogue (Manchester et al., 2005)

- Pulsars are very precise clocks and we time their pulses to measure rotation periods P and derivatives P.
- We now observe neutron stars as pulsars across the electromagnetic spectrum.


~ **3,500 pulsars** are known to date

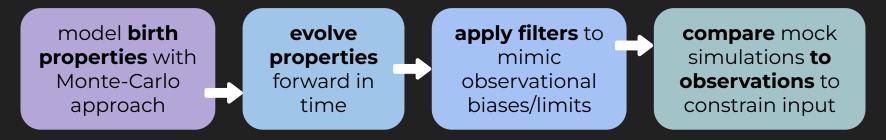
• Grouping neutron stars in the **PP-plane** according to their observed properties serves as a diagnostic tool to **identify different neutron-star classes**.

Outline

- Neutron stars
- Pulsar population synthesis
- Machine learning and sbi
- Inference results
- Summary

Cassiopeia A supernova remnant (credit: NASA/CXC/SAO)

General idea

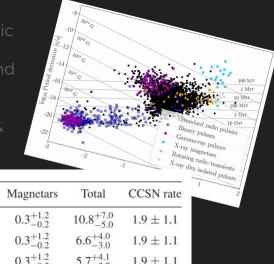

We can estimate the total number of neutron stars in our Galaxy

CC supernova rate:
~ 2 per century

Calaxy age:
~ 13.6 billion years

Calaxy age:
~ 13.6 billion years

 We only detect a very small fraction of all neutron stars. Population synthesis bridges this gap focusing on the full population of neutron stars (e.g. Faucher-Giguère & Kaspi 2006, Lorimer et al. 2006, Gullón et al. 2014, Cieślar et al. 2020):



<u>Goals</u>

- Population synthesis allows us to constrain the natal properties of neutron stars and their birth rates.
- This is for example relevant for:
 - Massive star evolution
 - Gamma-ray bursts
 - Fast-radio bursts
 - Peculiar supernovae

Estimated Galactic core-collapse supernova rate and birth rates for different pulsar classes (Keane & Kramer, 2008).

PSRs	RRATs	XDINSs	Magnetars	Total	CCSN rate
2.8 ± 0.5	$5.6^{+4.3}_{-3.3}$	2.1 ± 1.0	$0.3^{+1.2}_{-0.2}$	$10.8^{+7.0}_{-5.0}$	1.9 ± 1.1
1.4 ± 0.2	$2.8^{+1.6}_{-1.6}$	2.1 ± 1.0	$0.3^{+1.2}_{-0.2}$	$6.6^{+4.0}_{-3.0}$	1.9 ± 1.1
1.1 ± 0.2	$2.2_{-1.3}^{+1.7}$	2.1 ± 1.0	$0.3^{+1.2}_{-0.2}$	$5.7^{+4.1}_{-2.7}$	1.9 ± 1.1
1.6 ± 0.3	$3.2^{+2.5}_{-1.9}$	2.1 ± 1.0	$0.3^{+1.2}_{-0.2}$	$7.2^{+5.0}_{-3.4}$	1.9 ± 1.1
1.1 ± 0.2	$2.2^{+1.7}_{-1.3}$	2.1 ± 1.0	$0.3^{+1.2}_{-0.2}$	$5.7^{+4.1}_{-2.7}$	1.9 ± 1.1

 We can also learn about evolutionary links between different neutron-star classes (e.g., Viganó et al., 2013). This is important because estimates for the Galactic core-collapse supernova rate are insufficient for to explain the independent formation of different classes of pulsars (Keane & Kramer, 2008).

Dynamical evolution I

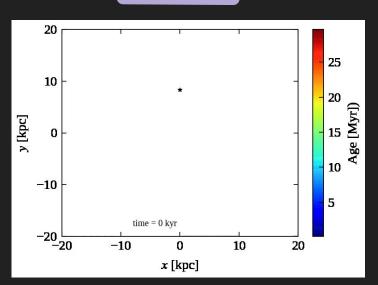
- Neutron stars are born in star-forming regions, i.e., in the Galactic disk along the Milky Way's spiral arms, and receive kicks during the supernova explosions.
- We make the following assumptions:
 - Spiral-arm model (Yao et al., 2017)
 plus rigid rotation with T = 250 Myr
 - Exponential disk model with scale height h_c (Wainscoat et al., 1992)
 - o Single-component Maxwell kick-velocity distribution with dispersion σ_k (Hobbs et al., 2005)
 - Galactic potential (Marchetti et al., 2019)

Artistic illustration of the Milky Way (credit: NASA JPL)

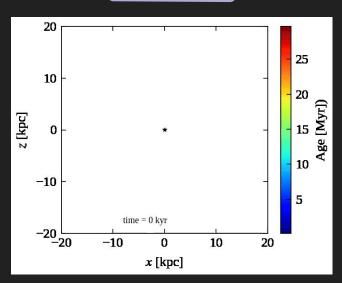
$$\mathcal{P}(z) = \frac{1}{h_c} e^{-\frac{|z|}{h_c}} \Big|$$

$$\mathcal{P}(v_{k}) = \sqrt{\frac{2}{\pi}} \frac{v_{k}^{2}}{\sigma_{k}^{3}} e^{-\frac{v_{k}^{2}}{2\sigma_{k}^{2}}}$$

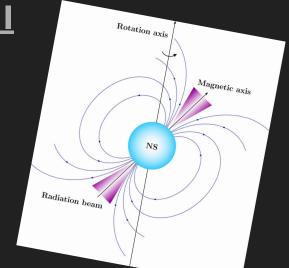
For Monte-Carlo approach, we vary two uncertain parameters h_c and σ_k .


Dynamical evolution II

For our Galactic model Φ_{MW}, we evolve the stars' position & velocity by solving
 Newtonian equations of motion in cylindrical galactocentric coordinates:



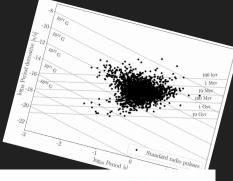
Galactic evolution tracks for $h_c = 0.18$ kpc, $\sigma = 265$ km/s.

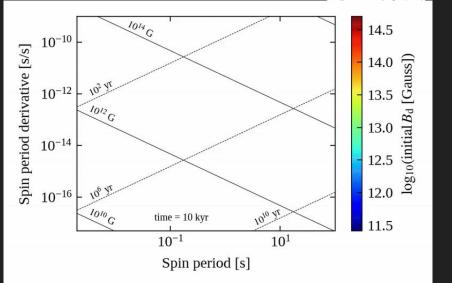

Side view

Magneto-rotational evolution I

- The neutron-star magnetosphere exerts a torque onto the star. This causes spin-down and alignment of the magnetic and rotation axes.
- Neutron star magnetic fields decay due to the Hall effect and Ohmic dissipation in the outer stellar layer (crust) (e.g., Viganó et al., 2013 & 2021).
- We make the following assumptions:
 - o **Initial periods** follow a log-normal with μ_p and σ_p (Igoshev et al., 2022)
 - o **Initial fields** follow a log-normal with μ_B and σ_B (Gullón et al., 2014)
 - Above $\tau \sim 10^6$ yr, **field decay** follows a power-law with B(t) \sim B₀ (1 + t/ τ)°.

$$\mathcal{P}(\log P_0) = rac{1}{\sqrt{2\pi}\sigma_P} \exp\left(-rac{\left[\log P_0 - \mu_P
ight]^2}{2\sigma_P^2}
ight)$$


Here, we **vary** the five uncertain parameters μ_{p} , μ_{B} , σ_{p} , σ_{B} and α .



Magneto-rotational evolution II

- To model the magneto-rotational evolution, we numerically solve two coupled ordinary differential equations for the period and the misalignment angle (Aguilera et al., 2008; Philippov et al. 2014).
- We use results from 2D magnetothermal simulations to determine the evolution of the magnetic field below 10⁶ yr (Viganò et al. 2021).
- This allows us to follow the stars' P and P evolution in the PP-plane.

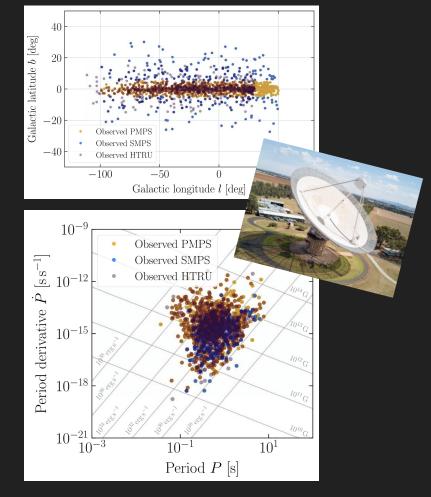
PP evolution tracks for $\mu_p = -0.6$, $\sigma_p = 0.3$, $\mu_B = 13.25$ and $\sigma_D = 0.75$.

Radio emission and detection

The stars' rotational energy E_{rot} is converted into coherent radio emission. We assume that the corresponding radio luminosity L_{radio} is proportional to the loss of E_{rot} (Faucher- Giguère & Kaspi, 2006; Gullón et al., 2014). L_n is taken from observations.

$$L_{
m radio} = L_0 \left(rac{\dot{P}}{P^3}
ight)^{1/2} \propto \dot{E}_{
m dot}^{1/2}$$

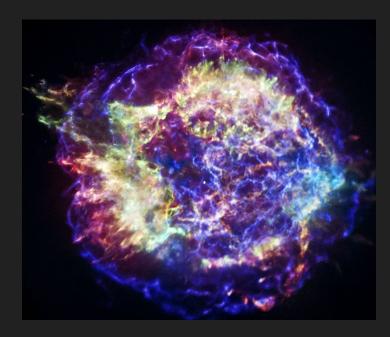
 As emission is beamed, ~ 90% of pulsars do not point towards us. For those intercepting our line of sight, compute radio flux S_{radio} & pulse width W.


$$S_{\rm radio} = \frac{L_{\rm radio}}{\Omega_{\rm beam} d^2}$$

A pulsar counts as detected, if it **exceeds the sensitivity threshold** for a survey recorded with a specific radio telescope.

Three pulsar surveys

- We compare our simulated populations with three surveys from Murriyang (the Parkes Radio Telescope):
 - Parkes Multibeam Pulsar Survey (PMPS): 1,009 PSRs
 - Swinburne Parkes Multibeam
 Pulsar Survey (SMPS): 218 PSRs
 - High Time Resolution Universe
 Survey (HTRU): 1,023 PSRs


Can we constrain birth properties by looking at a current snapshot of the pulsar population?

Outline

- Neutron stars
- Pulsar population synthesis
- Machine learning and sbi
- Inference results
- Summary

Cassiopeia A supernova remnant (credit: NASA/CXC/SAO)

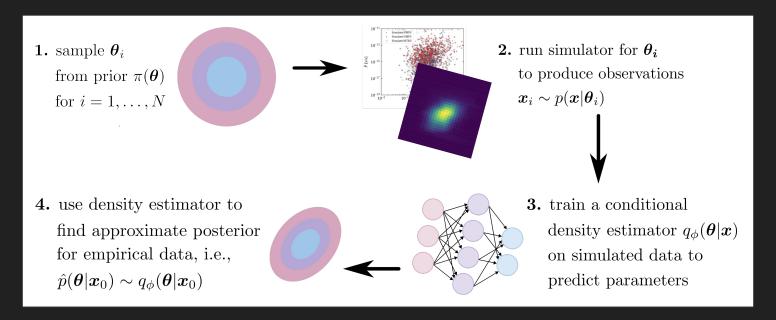
Comparing models and data

- Comparing observations to models and constraining regions of the parameter space that are most probable given the data is fundamental to many fields of science.
- Pulsar population synthesis is complex and has many free parameters. To compare synthetic simulations with observations, people have
 - Randomly sampled and then optimised 'by eye' (e.g., Gonthier et al., 2007)
 - Compared distributions of individual parameters using χ²- and KS-tests (e.g., Narayan & Ostriker, 1990; Faucher-Giguère & Kaspi, 2006)
 - Used annealing methods for optimisation (Gullón et al., 2014)
 - Performed Bayesian inference for simplified models (Cieślar et al., 2020)

These methods do not scale well and are **difficult to use** with the **multi-dimensional data** produced in population synthesis.

Statistical inference

- Instead of **deducing point estimates**, we often do not require exact estimates but want to obtain **knowledge of probable regions**.
- This is where Bayesian inference comes in: based on some prior knowledge π (θ), a stochastic model and some observation x, we want to infer the most likely distribution P(θ|x) for our model parameters θ given the data x. This is encoded in Bayes' Theorem:


$$\underbrace{\mathcal{P}(\theta|x)}_{\text{posterior}} = \underbrace{\frac{\mathcal{P}(\theta)}{\mathcal{P}(x)} \underbrace{\frac{\mathcal{P}(x|\theta)}{\mathcal{P}(x|\theta)}}_{\text{evidence}} = \frac{\mathcal{P}(\theta) \int \mathcal{P}(x,z|\theta) dz}{\int \mathcal{P}(x|\theta') \mathcal{P}(\theta') d\theta'}$$

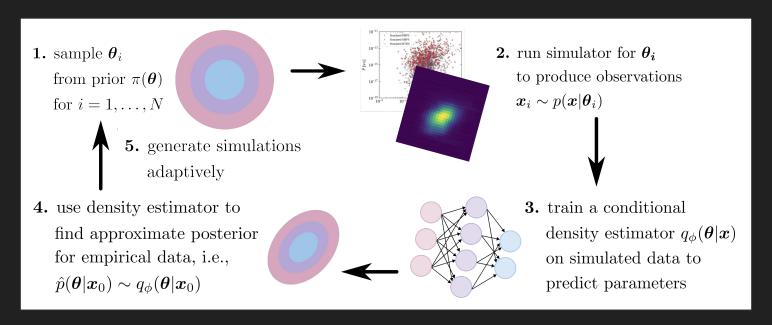
For complex simulators, the likelihood is defined implicitly and often intractable. This is overcome with simulation-based (likelihood-free) inference (see e.g. Cranmer et al., 2020).

Simulation-based inference I

• To perform **Bayesian inference for any kind of (stochastic) forward model** (e.g. those specified by simulators), we use the following approach:

Simulation-based inference II

- Different approaches (all relying on deep learning) exist to **learn a probabilistic association** between the simulated data and the underlying parameters. These algorithms essentially focus on different pieces of Bayes' theorem:
 - Neural Posterior Estimation (NPE) (e.g., Papamakarios & Murray, 2016)
 - Neural Likelihood Estimation (NLE) (e.g., Papamakarios et al., 2019)
 - Neural Ratio Estimation (NRE) (e.g., Hermans et al., 2020; Delaunoy et al., 2022)


We focus on NPE. This allows us to directly learn the posterior distribution. In contrast, NLE and NRE need an extra (potentially time consuming) MCMC sampling step to construct a posterior.

 All methods exist in sequential form (SNPE, SNLE, SNRE), which adds a fifth step to workflow. Instead of sampling from the prior, we adaptively generate simulations from the posterior. This typically requires fewer simulations.

Simulation-based inference I

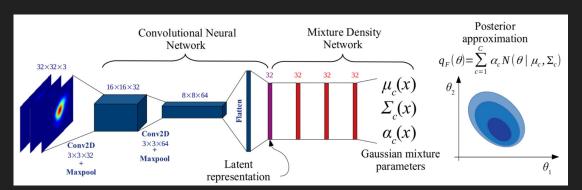
 To perform Bayesian inference for any kind of (stochastic) forward model (e.g. those specified by simulators), we use the following approach:

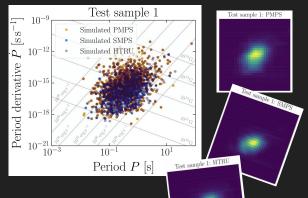
Outline

- Neutron stars
- Pulsar population synthesis
- Machine learning and sbi
- Inference results
- Summary

Cassiopeia A supernova remnant (credit: NASA/CXC/SAO)

Workflow Graber et al. (2024)

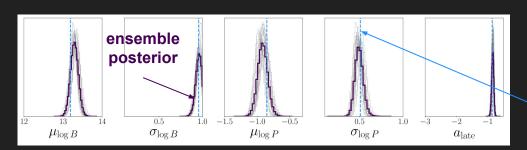

 With our complex population synthesis simulator, we fix the dynamics to a fiducial model and focus on the magneto-rotational evolution. Varying the five parameters μ_p, μ_B, σ_p, σ_B and α, we simulate 360,000 synthetic pulsar populations over 6 weeks.

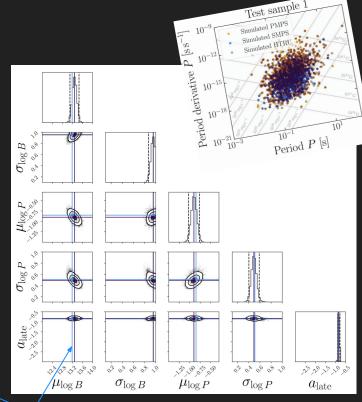

- From our simulated populations, we generate summary statistics: density maps for three surveys in the PP-plane.
- Build on PyTorch package sbi (Tejero-Cantero et al., 2020):

```
\mu_{\log B} \in \mathcal{U}(12, 14),
\sigma_{\log B} \in \mathcal{U}(0.1, 1),
\mu_{\log P} \in \mathcal{U}(-1.5, -0.3),
\sigma_{\log P} \in \mathcal{U}(0.1, 1),
a_{\text{late}} \in \mathcal{U}(-3, -0.5).
```

Workflow Graber et al. (2024)

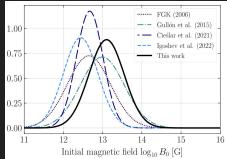
- With our complex population synthesis simulator, we fix the dynamics to a fiducial model and focus on the magneto-rotational evolution.
- From our simulated populations, we generate summary statistics: density maps for three surveys in the PP-plane.
- Build on **PyTorch package sbi** (Tejero-Cantero et al., 2020):

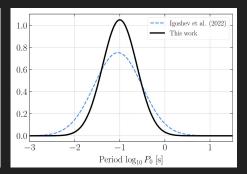


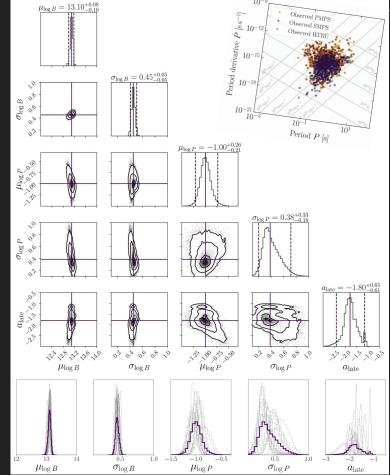

 $\mu_{\log B} \in \mathcal{U}(12, 14),$ $\sigma_{\log B} \in \mathcal{U}(0.1, 1),$ $\mu_{\log P} \in \mathcal{U}(-1.5, -0.3),$ $\sigma_{\log P} \in \mathcal{U}(0.1, 1),$ $a_{\text{late}} \in \mathcal{U}(-3, -0.5).$

Results I

- Inferring on test samples with known ground truths, we recover narrow and well-defined posteriors for all parameters.
- We varied the hyperparameters of our DL approach to test robustness, and find very similar training behaviour and optimisation losses for 19 inference experiments.

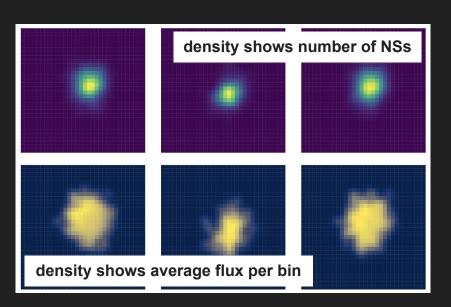



ground truths



Results II

- We then use the **ensemble posterior** to infer on the observed population:
 - Initial B-field parameters are narrower than initial P posteriors (expected due to degeneracies).
 - Posteriors for late-time evolution do not overlap causing bimodality (hinting at missing info/physics).



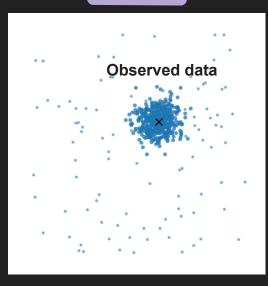
Simulator in Pardo et al. (2025)

• Using a **new radio luminosity**, we add two additional free parameters: the exponent, α , and the mean, μ_L , of the log-normally distributed normalisation factor L_{α} .

$$L_{
m int} = L_0 \left(rac{\dot{E}_{
m rot}}{\dot{E}_{0,{
m rot}}}
ight)^lpha,$$

 In addition to our period-period derivative diagrams, we provide consistent radio flux measurements observed with the MeerKat telescope (Posselt et al. 2023) to our neural network. We convert these into similar density maps.

For 7 parameters, we can no longer use an amortised NPE approach.

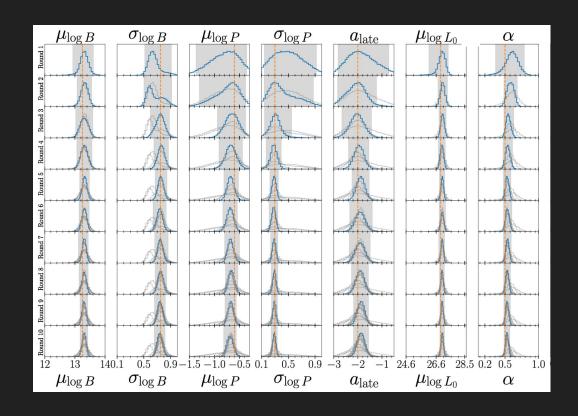


TSNPE Pardo et al. (2025)

We use the Truncated Sequential NPE approach (Deistler et al. 2022) to focus
on the regions of the parameter space that match our observed data.

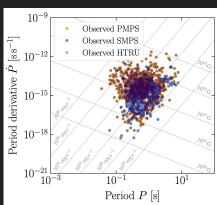
NPE

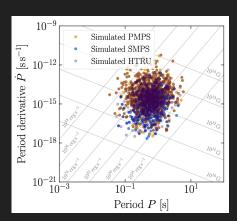
TSNPE

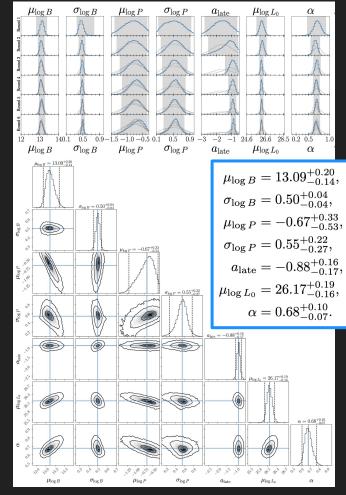

- We train over 10 rounds producing 1,000 simulations in each round. This gives a total of 10,000 simulations.
- We use the baseline network from Graber et al. (2024) and train it 5 times with different initialisations to obtain an ensemble prediction.

Results III

 When evaluating the algorithm for a test sample with known ground truths, we find that we require roughly 8 rounds to obtain converged posteriors.

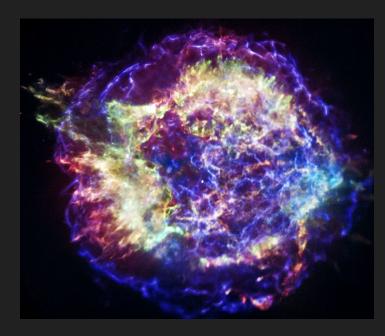

TSNPE is much more efficient and we require only 8,000 simulations compared to the 360,000 for NPE.





Results Pardo et al. (2025) IV

- When applying TSNPE on the observed population, we successfully infer 5 magnetorotational and 2 luminosity parameters.
- We find that adding flux information fixes the issue of the bimodality in the late-time evolution seen in Graber et al. (2024).



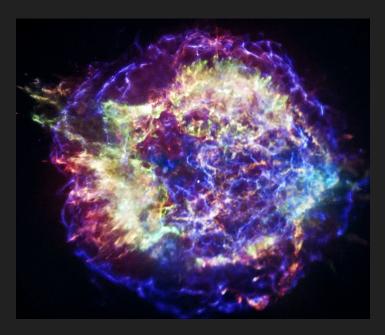
Outline

- Neutron stars
- Pulsar population synthesis
- Machine learning and sbi
- Inference results
- Summary

Cassiopeia A supernova remnant (credit: NASA/CXC/SAO)

10-9 Period derivative $\dot{P}_{[SS^{-l}]}$ Observed PMPS $Observed\ SMPS$ 10-15 $P_{eriod} P[s]$ Simulated PMPS Simulated SMPS Period derivative \dot{P} [ss⁻¹]

Period P [s]


<u>Summary</u>

- Pulsar population synthesis bridges the gap between 3,500 observed pulsars and the true population.
- SBI with neural density estimators is a powerful tool to infer pulsar parameters. TSNPE is particularly efficient.

- Realistic simulators are very complex, making standard Bayesian inference impossible.
- We are now working to incorporate complementary X-ray observations and doing model comparison with SBI.

THANK YOU

Cassiopeia A supernova remnant (credit: NASA/CXC/SAO)