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Neutron-star formation

● Neutron stars are one of three 
types of compact remnants, 
created during the final stages 
of stellar evolution.

● When a massive star of 8 - 25 
solar masses runs out of fuel, 
it collapses under its own 
gravitational attraction and 
explodes in a supernova.

● During the collapse, electron 
capture processes (p + e- → n + 𝜈e) 
produce (a lot of) neutrons. Snapshot of a 3D core-collapse 

supernova simulation (Mösta et al., 2014)

mass:  1.2 - 2.1 Mⵙ

radius:  9 - 15 km

density:  1015 g/cm3
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Lighthouse radiation

● Neutron stars have extreme 
magnetic fields between 108 
- 1015 G. For comparison, the 
Earth’s magnetic field is 0.5 G.

● Because rotation and magnetic 
axes are misaligned, neutron 
stars emit radio beams like a 
lighthouse.

● These pulses can be observed 
with radio telescopes. This is how 
neutron stars were first detected 
and why we call them pulsars.

Sketch of the 
neutron-star exterior.

Credit: J. Christiansen

Dame Jocelyn Bell 
Burnell in front of her 
radio telescope in 
Cambridge, UK.
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The neutron-star zoo

● Pulsars are very precise clocks and we 
time their pulses to measure rotation 
periods P and derivatives P.

● We now observe neutron stars as pulsars 
across the electromagnetic spectrum.

● Grouping neutron stars in the PP-plane 
according to their observed properties 
serves as a diagnostic tool to identify 
different neutron-star classes.

Period period-derivative plane for the pulsar 
population. Data taken from the ATNF Pulsar 

Catalogue (Manchester et al., 2005)

~ 3,500 pulsars are known to date
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The neutron-star zoo

● Pulsars are very precise clocks and we 
time their pulses to measure rotation 
periods P and derivatives P.

● We now observe neutron stars as pulsars 
across the electromagnetic spectrum.

\

● Grouping neutron stars in the PP-plane 
according to their observed properties 
serves as a diagnostic tool to identify 
different neutron-star classes.

Period period-derivative plane for the pulsar 
population. Data taken from the ATNF Pulsar 

Catalogue (Manchester et al., 2005)

~ 3,500 pulsars are known to date
Focus on the isolated 

radio-pulsar population
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General idea

● We can estimate the total number of neutron stars in our Galaxy

    ✕                        ＝

● We only detect a very small fraction of all neutron stars. Population synthesis 
bridges this gap focusing on the full population of neutron stars (e.g. Faucher- 
Giguère & Kaspi 2006, Lorimer et al. 2006, Gullón et al. 2014, Cieślar et al. 2020):

model birth 
properties with 

Monte-Carlo 
approach

apply filters to 
mimic 

observational 
biases/limits

compare mock 
simulations to 

observations to 
constrain input

evolve 
properties 
forward in 

time

CC supernova rate:
~ 2 per century

Galaxy age: 
~ 13.6 billion years

NS number:  
~ 2.8 x 108
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Goals

● Population synthesis allows us to 
constrain the natal properties of 
neutron stars and their birth rates. 

● This is for example relevant for:
○ Massive star evolution
○ Gamma-ray bursts
○ Fast-radio bursts
○ Peculiar supernovae

● We can also learn about evolutionary links between different neutron-star 
classes (e.g., Viganó et al., 2013). This is important because estimates for the 
Galactic core-collapse supernova rate are insufficient for to explain the 
independent formation of different classes of pulsars (Keane & Kramer, 2008).

Estimated Galactic 
core-collapse 

supernova rate and 
birth rates for 

different pulsar 
classes (Keane & 
Kramer, 2008).
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Dynamical evolution I 

● Neutron stars are born in star-forming 
regions, i.e., in the Galactic disk along the 
Milky Way’s spiral arms, and receive 
kicks during the supernova explosions.

●  We make the following assumptions:
○ Spiral-arm model (Yao et al., 2017) 

plus rigid rotation with T = 250 Myr
○ Exponential disk model with scale 

height hc (Wainscoat et al., 1992)
○ Single-component Maxwell 

kick-velocity distribution with 
dispersion σk (Hobbs et al., 2005)

○ Galactic potential (Marchetti et al., 2019)

Artistic 
illustration of 

the Milky 
Way (credit: 
NASA JPL)

For Monte-Carlo approach, 
we vary two uncertain 
parameters h

c and σ
k .
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Dynamical evolution II 

● For our Galactic model ΦMW, we evolve the stars’ position & velocity by solving 
Newtonian equations of motion in cylindrical galactocentric coordinates:

Galactic 
evolution tracks 
for hc = 0.18 kpc, 
σ = 265 km/s.

Top view Side view
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Magneto-rotational evolution I 

● The neutron-star magnetosphere exerts a torque 
onto the star. This causes spin-down and 
alignment of the magnetic and rotation axes.

● Neutron star magnetic fields decay due to the 
Hall effect and Ohmic dissipation in the outer 
stellar layer (crust) (e.g., Viganó et al., 2013 & 2021).

● We make the following assumptions:
○ Initial periods follow a log-normal 

with μP and σP (Igoshev et al., 2022)
○ Initial fields follow a log-normal 

with μB and σB (Gullón et al., 2014)
○ Above τ ~ 106 yr, field decay follows 

a power-law with B(t) ~ B0 (1 + t/τ)α.

Here, we vary the five 
uncertain parameters 
μP, μB, σP, σB and α.
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Magneto-rotational evolution II 

● To model the magneto-rotational 
evolution, we numerically solve 
two coupled ordinary differen- 
tial equations for the period and 
the misalignment angle (Aguilera et 
al., 2008; Philippov et al. 2014). 

● We use results from 2D magneto- 
thermal simulations to determine 
the evolution of the magnetic field 
below 106 yr (Viganò et al. 2021).

● This allows us to follow the stars’ P 
and P evolution in the PP-plane.

PP evolution tracks for 
μP = -0.6 , σP = 0.3 , μB = 

13.25 and σB = 0.75.
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Radio emission and detection 

● The stars’ rotational energy Erot is converted into 
coherent radio emission. We assume that the 
corresponding radio luminosity Lradio is proportio- 
nal to the loss of Erot (Faucher- Giguère & Kaspi, 2006; 
Gullón et al., 2014). L0 is taken from observations.

● As emission is beamed, ~ 90% of pulsars do not 
point towards us. For those intercepting our line of 
sight, compute radio flux Sradio & pulse width W.

A pulsar counts as detected, if it exceeds the sensitivity 
threshold for a survey recorded with a specific radio telescope.
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Three pulsar surveys

● We compare our simulated populations 
with three surveys from Murriyang 
(the Parkes Radio Telescope):
○ Parkes Multibeam Pulsar Survey 

(PMPS): 1,009 PSRs
○ Swinburne Parkes Multibeam 

Pulsar Survey (SMPS): 218 PSRs
○ High Time Resolution Universe 

Survey (HTRU): 1,023 PSRs
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Can we constrain birth properties 
by looking at a current snapshot 

of the pulsar population? 
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Comparing models and data

● Comparing observations to models and constraining 
regions of the parameter space that are most probable 
given the data is fundamental to many fields of science.

● Pulsar population synthesis is complex and has many free parameters. To 
compare synthetic simulations with observations, people have
○ Randomly sampled and then optimised ‘by eye’ (e.g., Gonthier et al., 2007)
○ Compared distributions of individual parameters using χ2- and KS-tests 

(e.g., Narayan & Ostriker, 1990; Faucher-Giguère & Kaspi, 2006)
○ Used annealing methods for optimisation (Gullón et al., 2014)
○ Performed Bayesian inference for simplified models (Cieślar et al., 2020)

These methods do not scale well and are difficult to use with 
the multi-dimensional data produced in population synthesis.
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Statistical inference

● Instead of deducing point estimates, we often do not require exact   
estimates but want to obtain knowledge of probable regions.

● This is where Bayesian inference comes in: based on some prior knowledge π
(θ), a stochastic model and some observation x, we want  to infer the most 
likely distribution P(θ|x) for our model parameters θ given the data x. This is 
encoded in Bayes’ Theorem:

For complex simulators, the 
likelihood is defined 
implicitly and often 

intractable. This is overcome 
with simulation-based 

(likelihood-free) inference 
(see e.g. Cranmer et al., 2020).
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Simulation-based inference I

● To perform Bayesian inference for any kind of (stochastic) forward model 
(e.g. those specified by simulators), we use the following approach:
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Simulation-based inference II

● Different approaches (all relying on deep learning) exist to learn a probabilis- 
tic association between the simulated data and the underlying parameters. 
These algorithms essentially focus on different pieces of Bayes’ theorem:
○ Neural Posterior Estimation (NPE) (e.g., Papamakarios & Murray, 2016)
○ Neural Likelihood Estimation (NLE) (e.g., Papamakarios et al., 2019)
○ Neural Ratio Estimation (NRE) (e.g., Hermans et al., 2020; Delaunoy et al., 2022)

● All methods exist in sequential form (SNPE, SNLE, SNRE), which adds a fifth 
step to workflow. Instead of sampling from the prior, we adaptively generate 
simulations from the posterior. This typically requires fewer simulations.

We focus on NPE. This allows us to directly learn the posterior 
distribution. In contrast, NLE and NRE need an extra (potentially 
time consuming) MCMC sampling step to construct a posterior.
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Simulation-based inference I

● To perform Bayesian inference for any kind of (stochastic) forward model 
(e.g. those specified by simulators), we use the following approach:
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Workflow Graber et al. (2024)

● With our complex population synthesis simulator, 
we fix the dynamics to a fiducial model and focus 
on the magneto-rotational evolution. 

● From our simulated populations, we generate summary 
statistics: density maps for three surveys in the PP-plane.

● Build on PyTorch package sbi (Tejero-Cantero et al., 2020):

Varying the five 
parameters μP, μB, σP, 

σB and α, we 
simulate 360,000 
synthetic pulsar 

populations over 6 
weeks.
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Workflow Graber et al. (2024)

● With our complex population synthesis simulator, 
we fix the dynamics to a fiducial model and focus 
on the magneto-rotational evolution. 

● From our simulated populations, we generate summary 
statistics: density maps for three surveys in the PP-plane.

● Build on PyTorch package sbi (Tejero-Cantero et al., 2020):
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Results I

● Inferring on test samples with known 
ground truths, we recover narrow and 
well-defined posteriors for all parameters.

● We varied the hyperparameters of our DL 
approach to test robustness, and find very 
similar training behaviour and optimisa- 
tion losses for 19 inference experiments.
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Results II

● We then use the ensemble posterior 
to infer on the observed population:
○ Initial B-field parameters are 

narrower than initial P posteriors 
(expected due to degeneracies).

○ Posteriors for late-time evolution 
do not overlap causing bimodality 
(hinting at missing info/physics).
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Simulator in Pardo et al. (2025)

● Using a new radio luminosity, we add two additional 
free parameters: the exponent, α, and the mean, μL, of 
the log-normally distributed normalisation factor L0.

● In addition to our period-period 
derivative diagrams, we provide 
consistent radio flux measurements 
observed with the MeerKat 
telescope (Posselt et al. 2023) to our 
neural network. We convert these 
into similar density maps.
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density shows number of NSs

density shows average flux per bin
For 7 parameters, we can no longer 

use an amortised NPE approach.



TSNPE Pardo et al. (2025)

● We use the Truncated Sequential NPE approach (Deistler et al. 2022) to focus 
on the regions of the parameter space that match our observed data.

● We train over 10 rounds 
producing 1,000 simula- 
tions in each round. This 
gives a total of 10,000 
simulations. 

● We use the baseline 
network from Graber et 
al. (2024) and train it 5 
times with different 
initialisations to obtain an 
ensemble prediction.
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Results III

● When evaluating the 
algorithm for a test 
sample with known 
ground truths, we 
find that we require 
roughly 8 rounds to 
obtain converged 
posteriors. 
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TSNPE is much more 
efficient and we 

require only 8,000 
simulations compared 
to the 360,000 for NPE.



Results Pardo et al. (2025) IV

● When applying TSNPE on the observed 
population, we successfully infer 5 magneto- 
rotational and 2 luminosity parameters.

● We find that adding flux information fixes 
the issue of the bimodality in the late-time 
evolution seen in Graber et al. (2024).
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Summary

● Pulsar population 
synthesis bridges the 
gap between 3,500 
observed pulsars and 
the true population.

Vanessa.Graber@rhul.ac.uk

● Realistic simulators are 
very complex, making 
standard Bayesian 
inference impossible.

● SBI with neural density 
estimators is a powerful 
tool to infer pulsar 
parameters. TSNPE is 
particularly efficient.

● We are now working     
to incorporate comple- 
mentary X-ray observa- 
tions and doing model 
comparison with SBI.
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THANK YOU
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