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Neutron-star formation

e Neutron stars are one of three
types of compact remnants,
created during the final stages

of stellar evolution. mass: 12-21M_

radius: 9 -15 km
density: 10 g/cm?

e \When a massive star of 8 - 25
solar masses runs out of fuel,
it collapses under its own
gravitational attraction and
explodes in a supernova.

e During the collapse, electron
capture processes (p+e > n+wv )
produce (a lot of) neutrons.




Lighthouse radiation

Rotation axis

e Neutron stars have extreme
magnetic fields between 108
-10" G. For comparison, the
Earth’'s magnetic field is 0.5 G.

Magnetic axis

e Because rotation and magnetic
axes are misaligned, neutron
stars emit radio beams like a
lighthouse.

e These pulses can be observed
with radio telescopes. This is how
neutron stars were first detected
and why we call them pulsars.
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The neutron-star zoo

e Pulsars are very precise clocks and we
time their pulses to measure rotation
periods P and derivatives P.

e \We now observe neutron stars as pulsars
across the electromagnetic spectrum.

logyo Period derivati

~ 3,500 pulsars are known to date

logu Period [ | ¢ Grouping neutron stars in the Pl5-plane
according to their observed properties
serves as a diagnostic tool to identify
different neutron-star classes.
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The neutron-star zoo

Focus on the isolated
radio-pulsar population

logyg Period 3]

1sars

Pulsars are very precise clocks and we
time their pulses to measure rotation
periods P and derivatives P.

We now observe neutron stars as pulsars
across the electromagnetic spectrum.

~ 3,500 pulsars are known to date

Grouping neutron stars in the Pl5-plane
according to their observed properties
serves as a diagnostic tool to identify
different neutron-star classes.
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Cassiopeia A supernova remnant
(credit: NASA/CXC/SAQ)



General idea

e \We can estimate the total number of neutron stars in our Galaxy

CC supernova rate: x Galaxy age:
~ 2 per century ~13.6 billion years

e \We only detect a very small fraction of all neutron stars. Population synthesis
bridges this gap focusing on the full population of neutron stars

NS number:

~2.8x108

model birth evolve apply filters to compare mock
properties with properties mimic simulations to

Monte-Carlo forward in observational observations to
approach time biases/limits constrain input

555 Sl ROYAL
TSl HOLLOWAY
nnnnnnn

nnnnn



Goals

e Population synthesis allows us to
constrain the natal properties of
neutron stars and their birth rates.

e Thisis for examp|e relevant for: XDINSs  Magnetars ~ Total ~ CCSN rate
: . 28405 5673 21+10 t12 1.9+ 1.1

Massive star evolution 1402 28716 21410 032 0 19411
Gamma-ray bursts 11+£02 2247 21+10 2 5gh). 19ETd

Fast-radio bursts 1.6+03 32723 21+10 2 30 19+ 1.1
Peculiar supernovae 11402 2217 21410 2 57t 19+11

O O O O

e \We can also learn about evolutionary links between different neutron-star
classes . This is important because estimates for the
Galactic core-collapse supernova rate are insufficient for to explain the
independent formation of different classes of pulsars
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Dynamical evolution |

e Neutron stars are born in star-forming
regions, i.e, in the Galactic disk along the
Milky Way's spiral arms, and receive
kicks during the supernova explosions.

e We make the following assumptions:

o Spiral-arm model
plus rigid rotation with T = 250 Myr

o Exponential disk model with scale
height h_

o Single-component Maxwell
kick-velocity distribution with
dispersion g,

o Galactic potential
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Dynamical evolution li

® For our Galactic model ®, ., we evolve the stars’ position & velocity by solving
Newtonian equations of motion in cylindrical galactocentric coordinates:

& T
) )
& o
iy <

time = 0 kyr time = 0 kyr

ROYAL
HOLLOWAY
UNIVERSITY
OF LONDON




Magneto-rotational evolution |

e The neutron-star magnetosphere exerts a torque
onto the star. This causes spin-down and
alignment of the magnetic and rotation axes.

e Neutron star magnetic fields decay due to the
Hall effect and Ohmic dissipation in the outer
stellar layer (crust)

e We make the following assumptions:

o Initial periods follow a log-normal
with y,and o,

o Initial fields follow a log-normal
with y;and o, Here, we vary the five

o Above 1 ~10°yr, field decay follows uncertain parameters
a power-law with B(t) ~ B, (1 + t/1)% Mps Mg Op, 0 and a.
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Magneto-rotational evolution Il

e To model the magneto-rotational
evolution, we numerically solve
two coupled ordinary differen-
tial equations for the period and
the misalignment angle

s 5
g °
e We use results from 2D magneto- £ &
° ° . o —
thermal simulations to determine £ £
the evolution of the magnetic field 2, ;E;
below 10° yr A =
time = 10 kyr \\\\““‘
e This allows us to follow the stars' P 107 10'

and P evolution in the PP-plane. Spin.pertod 5]
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Radio emission and detection

e The stars' rotational energy E.. is converted into
coherent radio emission. We assume that the P 1/2
) . . . : . 170
corresponding radio luminosity L _ .. is proportio- ey 53 x Edét
nal to the loss of Erot
. LO is taken from observations.

e As emission is beamed, ~ 90% of pulsars do not
point towards us. For those intercepting our line of
sight, compute radio flux S & pulse width W.

L radio
Sy

adio —
Qbeam d2

radio

A pulsar counts as detected, if it exceeds the sensitivity

threshold for a survey recorded with a specific radio telescope.
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Three pulsar surveys

e \We compare our simulated populations
with three surveys from Murriyang
(the Parkes Radio Telescope):

o Parkes Multibeam Pulsar Survey
(PMPS): 1,009 PSRs

o Swinburne Parkes Multibeam
Pulsar Survey (SMPS): 218 PSRs

o High Time Resolution Universe
Survey (HTRU): 1,023 PSRs

Can we constrain birth properties

by looking at a current snapshot
of the pulsar population?
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Comparing models and data

e Comparing observations to models and constraining
regions of the parameter space that are most probable
given the data is fundamental to many fields of science.

e Pulsar population synthesis is complex and has many free parameters. To
compare synthetic simulations with observations, people have

o Randomly sampled and then optimised ‘by eye’
o Compared distributions of individual parameters using x?>- and KS-tests

o Used annealing methods for optimisation
o Performed Bayesian inference for simplified models

These methods do not scale well and are difficult to use with

the multi-dimensional data produced in population synthesis.




Statistical inference

Instead of deducing point estimates, we often do not require exact
estimates but want to obtain knowledge of probable regions.

This is where Bayesian inference comes in: based on some prior knowledge T
(8), a stochastic model and some observation x, we want to infer the most
likely distribution P(8|x) for our model parameters 8 given the data x. This is

encoded in Bayes' Theorem:

For complex simulators, the
prior 7 likelihood £ likelihood is defined

P(O) P(x|0) p(@)fp(aj’zw)dz implicitly and often

= intractable. This is overcome
fP(x|c9’)77(9’)d9’ with simulation-based
(likelihood-free) inference
(see e.g. Cranmer et al., 2020).

P(z)
posterior SN—~—

evidence




Simulation-based inference |

e To perform Bayesian inference for any kind of (stochastic) forward model
(e.g. those specified by simulators), we use the following approach:

1. sample 6; . 2. run simulator for 6;

from prior w(0) R to produce observations
fori=1,...,N x; ~ p(z|0;)

4. use density estimator to 3. train a conditional
find approximate posterior density estimator ¢,(6|x)
for empirical data, i.e., on simulated data to

p(B|xo) ~ qp(8]x0) predict parameters
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Simulation-based inference |l

e Different approaches (all relying on deep learning) exist to learn a probabilis-
tic association between the simulated data and the underlying parameters.
These algorithms essentially focus on different pieces of Bayes' theorem:

o Neural Posterior Estimation (NPE)
o Neural Likelihood Estimation (NLE)
o Neural Ratio Estimation (NRE)

We focus on NPE. This allows us to directly learn the posterior

distribution. In contrast, NLE and NRE need an extra (potentially
time consuming) MCMC sampling step to construct a posterior.

e All methods exist in sequential form (SNPE, SNLE, SNRE), which adds a fifth
step to workflow. Instead of sampling from the prior, we adaptively generate
simulations from the posterior. This typically requires fewer simulations.
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Simulation-based inference |

To perform Bayesian inference for any kind of (stochastic) forward model
(e.g. those specified by simulators), we use the following approach:

1. sample 6; 2. run simulator for 6;
from prior 7(0) > - to produce observations
fori=1,...,N x; ~ p(x|6;)

5. generate simulations

adaptively

4. use density estimator to 3. train a conditional

find approximate posterior density estimator ¢,(6|x)
for empirical data, i.e., on simulated data to

p(B|xo) ~ qp(8]x0) predict parameters
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Varying the five
parameters W, U, ©
oy and a, we
e With our complex population synthesis simulator, simulate 360,000
we fix the dynamics to a fiducial model and focus synthetic pulsar
on the magneto-rotational evolution. populations over 6

Workflow Graber et al. (2024)
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Test sample 1: PMPS

Workflow Graber et al. (2024)

With our complex population synthesis simulator,
we fix the dynamics to a fiducial model and focus

on the magneto-rotational evolution.  Petod P st
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From our simulated populations, we generate summary
statistics: density maps for three surveys in the PP-plane.

Build on PyTorch package sbi

. . . Posterior
Convolutional Neural Mixture Density approximation
Network Network ppc

q:(0)=>. a.N(6]| u,%,)
1 (x)

DG

Gaussian mixture

Latent parameters
representation




Results |

e Inferring on test samples with known
ground truths, we recover narrow and
well-defined posteriors for all parameters.

e \We varied the hyperparameters of our DL
approach to test robustness, and find very
similar training behaviour and optimisa-
tion losses for 19 inference experiments.

ensemble

2l ROYAL
HOLLOWAY
UNIVERSITY




Results ||

We then use the ensemble posterior
to infer on the observed population:

@)

Initial B-field parameters are
narrower than initial P posteriors
(expected due to degeneracies).
Posteriors for late-time evolution
do not overlap causing bimodality
(hinting at missing info/physics).
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Simulator in Pardo et al. (2025)

e Using a new radio luminosity, we add two additional
free parameters: the exponent, a, and the mean, M of
the log-normally distributed normalisation factor L.

density shows number of NSs e In a-ddl’.uon ’Fo our perlod—per[od
derivative diagrams, we provide
consistent radio flux measurements
observed with the MeerKat
telescope to our

neural network. We convert these
into similar density maps.

density shows average flux per bin

For 7 parameters, we can no longer

use an amortised NPE approach.
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TSNPE Pardo et al. (2025)

e We use the Truncated Sequential NPE approach (Deistler et al. 2022) to focus
on the regions of the parameter space that match our observed data.

TSNPE e \We train over 10 rounds

producing 1,000 simula-
tions in each round. This
gives a total of 10,000
simulations.

Observed data

e \We use the baseline
network from Graber et
al. (2024) and train it 5
times with different
Initialisations to obtain an
ensemble prediction.
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Results Il

e When evaluating the
algorithm for a test
sample with known
ground truths, we
find that we require
roughly 8 rounds to
obtain converged
posteriors.

TSNPE is much more
efficient and we

require only 8,000
simulations compared
to the 360,000 for NPE.

1401 05 09-15-1.0-0501 05 09 -3 —2 —1 246 26.6 28502 0.5
Olog B Hiog P Olog P Qlate Hiog Ly o
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Results Pardo et al. (2025) IV

e When applying TSNPE on the observed
population, we successfully infer 5 magneto-

- . e - A
13 .9 -3 —2 —1 246 26.6

rotational and 2 luminosity parameters. s Oogn Mo Ogp Gue Mgty
hia fi10g B = 13.09732%,
e We find that adding flux information fixes Ul T1og B = 0.5010:04,
the issue of the bimodality in the late-time 1314 tog P = —0.677535,
evolution seen in Graber et al. (2024). S 7our :0'(5)58285%;6
Y late = —Y-00_0.175
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Cassiopeia A supernova remnant
(credit: NASA/CXC/SAO)
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Summary

Pulsar population
synthesis bridges the
gap between 3,500
observed pulsars and
the true population.

e Realistic simulators are

very complex, making
standard Bayesian
inference impossible.

e SBI with neural density

estimators is a powerful
tool to infer pulsar
parameters. TSNPE is
particularly efficient.

e \We are now working
to incorporate comple-
mentary X-ray observa-
tions and doing model
comparison with SBI.
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