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Background Three condensates

� Detailed BCS calculations provide the pairing gaps ∆, which are
associated with the critical temperatures Tc for the superfluid
and superconducting phase transitions.

Figure 1: Left: Parametrised proton (singlet) and neutron (singlet, triplet) energy gaps as a function
of Fermi wave numbers (Ho, Glampedakis & Andersson, 2012). Right: Critical temperatures of

superconductivity/superfluidity as a function of the neutron star density. The values are computed for
the NRAPR equation of state (Steiner et al., 2005; Chamel, 2008).
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Background The (old) type-II picture

Figure 2: Type-II and intermediate type-I
state (Brandt & Essmann, 1987).

� Due to high conductivity, the magnetic flux
cannot be expelled from their interiors ⇒
neutron stars do not exhibit Meissner effect
and are in a metastable state (Baym, Pethick

& Pines, 1969; Ho, Andersson & Graber, 2017).

� State depends on characteristic lengthscales and standard considera-
tions give κ = λ?/ξft > 1/

√
2 in the outer core, i.e., a type-II state with

Hc1 = 4πEft/φ0 ∼ 1014 G, Hc2 = φ0/(2πξ2ft) ∼ 1015 G. (1)

� Each fluxtube carries a flux quantum φ0 = hc/2e ≈ 2.1× 10−7 Gcm2.
All flux quanta add up to the total magnetic flux, so that the averaged
magnetic induction is related to the fluxtube area density Nft:

B = Nftφ0, → Nft ≈ 4.8× 1018
(
B/1012 G

)
cm−2. (2)
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Background Motivation

� Our understanding of macroscopic NS superconductivity is mainly based
on time-independent equilibrium and single-component considerations.

� It is unclear what happens in the stellar interior at different densities as
the star cools below Tc and when entrainment is included ⇒ how can we
better understand the SC phase and its formation?

� Focus on the two-condensate aspect and expand on earlier works by
Alpar, Langer & Sauls (1984); Charbonneau & Zhitnitsky (2007); Alford &
Good (2008); Kobyakov et al. (2015); Haber & Schmitt (2017).

Rely on techniques for laboratory systems to construct phase
diagrams of the protons by deducing their ground state in the

presence of a magnetic field as a function of density.
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SC phases Galilean invariant GL model

� With entrainment, velocity-dependent terms in energy density read

Fvel = 1
2ρp|Vp|2 + 1

2ρn|Vn|2 − 1
2ρ

pn|Vp − Vn|2 , (3)

where ρp and ρn are the true mass densities, the coefficient ρpn < 0
determines the strength of entrainment (Andreev & Bashkin, 1975) and Vp,n

are superfluid velocities related to canonical momenta, i.e., ∝ ∇argψx.

� In a mean-field framework, entrainment first enters at 4th order in ψn,p

and 2nd order in their derivatives, i.e., we require a linear combination of

|ψx |2|∇ψy |2, ψxψy∇ψ?x ·∇ψ?y , ψxψ
?
y∇ψ?x ·∇ψy , ψ

?
xψ

?
y∇ψx ·∇ψy , (4)

where x , y ∈ {p, n}. Galilean invariance can be used to simplify the sum
and is crucial to link our energy density to nuclear physics models.
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SC phases Helmholtz free energy density

� Total Helmholtz free energy density is obtained by adding entrainment
terms to the usual free energy of a two-component superconductor, and
introducing the magnetic vector potential A by minimal coupling:

F [ψp, ψn,A] = F0 − µp|ψp|2 − µn|ψn|2 +
gpp

2
|ψp|4 +

gnn

2
|ψn|4 + gpn|ψp|2|ψn|2

+
}2

4mu

∣∣∣∣(∇− 2ie
}c

A
)
ψp

∣∣∣∣2 +
}2

4mu
|∇ψn|2 +

1
8π
|∇× A|2

+ h1

∣∣∣∣(∇− 2ie
}c

A
)

(ψ?nψp)

∣∣∣∣2 + 1
2 (h2 − h1)∇(|ψp|2) ·∇(|ψn|2)

+ 1
4h3

(∣∣∇(|ψp|2)
∣∣2 +

∣∣∇(|ψn|2)
∣∣2) , (5)

where F0 is an arbitrary reference level and proton Cooper pairs have
charge 2e. µp and µn are the chemical potentials, while gpp and gnn define
the self-repulsion of the condensates, and gpn their mutual repulsion.
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SC phases Skyrme connection

� We connect this functional to the Skyrme interaction to obtain coeffi-
cients hi that allow a realistic description of the neutron star interior:

h1 = C τ0 − C τ1 , h2 = −4C∆ρ
0 + 4C∆ρ

1 , (6)

h3 = h4 = C τ0 + C τ1 − 4C∆ρ
0 − 4C∆ρ

1 . (7)

� The parameter h1 controls the entrainment (Chamel & Haensel, 2006)

ρpn = − 2
}2

h1ρnρp. (8)

� We also use the Skyrme model to determine the stellar composition
(solving for baryon conservation, charge neutrality, beta equilibrium and
muon production rate) (Chamel, 2008), but a separate parametrisation for
the SF/SC gaps (Andersson, Comer & Glampedakis, 2005; Ho et al., 2015).
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SC phases Two thought experiments

� To find the ground state in the presence of an imposed magnetic field,
we can control (i) the magnetic flux density, B = ∇× A, by imposing a
mean flux B, or (ii) the thermodynamic external magnetic field H.

� Case (i) approximates the neutron star interior, which becomes super-
conducting as the star cools in the presence of a pre-existing field.

Figure 3: Phase diagrams for a one-component superconductor, for different values of the Ginzburg-Landau
parameter, κ. The experiment with an imposed external field, |H|, in nondimensional units is shown on the left,

while the right panel shows the phase transitions in the experiment with an imposed mean flux, B.
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SC phases Energy per flux quantum

� We solve the Euler-Lagrange equations with quasi-periodic boundary
conditions (Wood et al., 2019), which involves specifying the domain size
Lx × Ly , and the number N of magnetic flux quanta within the domain
⇒ different choices allow comparing square and hexagonal lattices.

� The Helmholtz free energy per magnetic flux quantum per unit length is
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N
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∫ Ly

y=0
F dx dy . (9)

Figure 4: Helmholtz free energy per flux
quantum per unit length, F , as a function
of the area per magnetic flux quantum,

a = 2π/B, for the NRAPR EoS at
nb = 0.2831/fm3. The energy in the

square (long-dashed, cyan) and hexagonal
(solid, blue) lattice states matches
smoothly onto the energy of the

non-superconducting state (short-dashed,
purple) at a ' 12.9.
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SC phases Inhomogeneous ground states

� Choosing a sufficiently large domain, and values of a, we obtain examples
of inhomogeneous ground states ⇒ for NRAPR at nb = 0.2831/fm3

with a = 14.5 plus N = 24 (left) and a = 52 plus N = 14 (right).

� In both cases, the aspect ratio is
√

3 and the pure hexagonal lattice a
possible state but not the ground state ⇒ F is lower than for pure lattice.

Figure 5: Inhomogeneous ground states for NRAPR. Brightness and hue indicate density and phase of the proton
order parameter, ψp, respectively. The left panel shows a mixture of non-superconducting protons and hexagonal

fluxtube lattice, while the right one is mixture of Meissner state and hexagonal fluxtube lattice.
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SC phases Phase diagrams LNS

� When such mixed states are present, second-order phase transitions are
replaced by first-order transitions at Hc1′ < Hc1 and Hc2′ > Hc2.

� We can determine critical fields (partially semi-analytically, partially
numerically) and construct phase-diagrams of the superconducting state
throughout the neutron star core. For the LNS equation of state:

Figure 6: Phase diagrams for LNS. There are inhomogeneous regimes of the Meissner/Non-superconducting
(M/N), Meissner/Fluxtube (M/F) and Fluxtube/Non-superconducting (F/N) states.
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SC phases NRAPR, SLy4, SQMC700
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SC phases Ska35s20, Skχ450
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SC phases Implications

� Entrainment causes type-1.5 SC due
to fluxtube repulsion on short scales
and attraction on large scales ⇒ when
imposing B, mixed states appear.

� For typical EoSs, the outer core of
pulsars with . 1014 G is not a type-II
superconductor but mainly a type-1.5
system, where magnetic flux is
irregularly distributed and retained.

� In the inner core, flux is distributed in
an intermediate type-I state. The
transition can be estimated via:

Figure 7: Magnetic decoration image of
multi-band superconductor

Mg2B (Moshchalkov et al., 2009).

λ?
ξft

=
1√
2

√
1 + h1

nn

np
. (10)
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SC phases Flux distribution

Figure 8: Zoomed-out version of the LNS phase diagram for a fixed mean flux (left).
Schematic representation of the magnetic flux at the transition from outer to inner core (right).

� At low densities, protons are in a type-1.5 regime, where flux is
quantized into thin fluxtubes (orange) of preferred separation (overall
confined to a small fraction of the total volume).

� In the type-I inner core, flux is contained in macroscopic regions of
normal conductivity (light blue) that alternate with flux-free regions.
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SC phases (A few) caveats

� We assume that the Skyrme model correctly describes interactions up
to the neutron star centre. If exotic particles / non-nucleonic matter are
present, this would modify the picture at high densities.

� Our Ginzburg–Landau model is time-independent and neglects
rotation, i.e., we do not capture dynamics or incorporate neutron
vortices, which are crucial to get the full macroscopic picture.

� For a full dynamical model, we would need to incorporate the electron
component. However, they are normal and do not form a quantum
condensate. We do not have a formalism to consistently include such a
(particle) component in the Ginzburg–Landau model.
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The end
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Appendix Thought experiments

� To find the ground state for our system in the presence of an imposed
magnetic field, we can perform two distinct experiments: we control (i)
the magnetic flux density, B = ∇× A, by imposing a mean or net
magnetic flux, or (ii) the thermodynamic external magnetic field, H.

� In the first case, we minimise the Helmholtz free energy, F = 〈F 〉,
where the angled brackets represent some kind of integral over our
physical domain ⇒ closely approximates the conditions in the neutron star
core, which becomes superconducting as the star cools in the presence of
pre-existing magnetic field. The ground state can be inhomogeneous.

� In the second case, we minimise the dimensionless Gibbs free energy,
G = F − 2κ2H · 〈B〉. In an unbounded domain, the ground state is
guaranteed to be homogeneous, and the phase diagram simpler.
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Appendix Euler-Lagrange equations

� Whether we work with F or G, we obtain the same equations of motion:

κ2∇× (∇× A) = =
{
ψ?p(∇− iA)ψp +

h1
ε
ψnψ

?
p(∇− iA)(ψ?nψp)

}
, (11)

∇2ψn = R2(|ψn|2 − 1)ψn + α(|ψp|2 − 1)ψn

− h1ψp(∇ + iA)2(ψ?pψn)

− ψn∇2
(
h2 − h1

2
|ψp|2 +

h3
2ε
|ψn|2

)
, (12)

(∇− iA)2ψp = (|ψp|2 − 1)ψp +
α

ε
(|ψn|2 − 1)ψp

− h1
ε
ψn(∇− iA)2(ψ?nψp)

− ψp∇2
(
h2 − h1

2ε
|ψn|2 +

h3
2
|ψp|2

)
. (13)
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Appendix Energy minimisation

� F is approximated numerically on a regular 2D grid. The order parameters
ψp and ψn are defined on the gridpoints as ψi,j

p and ψi,j
n , while the vector

field A has two components, (Ax ,Ay ), defined on the corresponding links
between the gridpoints, i.e., we have A

i+1/2,j
x and A

i,j+1/2
y .

� The gauge coupling between ψp and A is implemented using a Peierls
substitution to preserve (discrete) gauge symmetry, e.g.,∣∣∣∣( ∂

∂x
− iAx

)
ψp

∣∣∣∣ =

∣∣∣∣ ∂∂x exp(−
∫

iAx dx)ψp

∣∣∣∣
⇒
∣∣∣∣( ∂

∂x
− iAx

)
ψp

∣∣∣∣i+1/2,j

' 1
δx

∣∣∣exp(−iAi+1/2,j
x δx)ψi+1,j

p − ψi,j
p

∣∣∣ . (14)

� This leads to a discrete approximation Fdis[ψi,j
p , ψ

i,j
n ,A

i+1/2,j
x ,A

i,j+1/2
y ] and

we obtain the ground state using a gradient-descent, iteration method.
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Appendix SC formation

� In the outer core, initially, only protons are superconducting (neutrons
remain normal), so we model the formation of the superconducting
phase with a single-component time-dependent Ginzburg-Landau model.

� Study the dynamics of the phase transition under different circum-
stances in analogy to numerical experiments of laboratory systems (Liu,

Mondello & Goldenfeld, 1991; Frahm, Ullah & Dorsey, 1991).

Figure 9: Evolution of the magnetic field in a type-I system in the nucleation regime.
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