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Neutron star interiors

e The interior structure of neutron stars is complex and influenced by
the (unknown) nuclear-matter equation of state.
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Superfluid components

e Although neutron stars are hot compared to
laboratory experiments, they are cold in terms
of their extremely high densities.
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Superfluid components
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e Although neutron stars are hot compared to
laboratory experiments, they are cold in terms
of their extremely high densities.
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Quantum vortices

e Superfluids are macroscopic quantum states,

characterised by a wave function LIJ=LPOei‘P,
which satisfies the Schrédinger equation.
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Quantum vortices
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characterised by a wave function LIJ=LIJOei“’,
which satisfies the Schrédinger equation.
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Quantum vortices

e Superfluids are macroscopic quantum states,

characterised by a wave function LIJ=LIJOei“’,
which satisfies the Schrédinger equation.
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Each vortex
carries a

(@) quaﬂ
by mef;te circulation K
QUantised = h/m_
VOrt,'Ces

e The vortices form an array that mimics solid-
body rotation on large scales w =2Q = N_ k.
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Pulsar glitches |
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e As observed by pulsar timing, the
regular spin-down of neutron stars
can be interrupted by sudden spin-ups.
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e As observed by pulsar timing, the
regular spin-down of neutron stars

can be interrupted by sudden spin-ups.

We can
understand
the glitch
origin with an
experiment.
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e As observed by pulsar timing, the
regular spin-down of neutron stars
can be interrupted by sudden spin-ups.
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e As observed by pulsar timing, the
regular spin-down of neutron stars
can be interrupted by sudden spin-ups.
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We can
understand
the glitch
origin with an
experiment.
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Pular glitches |l

e Spin-up glitches can be naturally explained in a
multi-component neutron star model.
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Pular glitches |l

e Spin-up glitches can be naturally explained in a
multi-component neutron star model.

The crustg)
SuperﬂUid acts
s a reservojr of

angular mo-
mentum.

Internal superfluid

Spin frequency

qulilibn.um

The shape of the Glitch

glitch encodes
the (hidden)

internal neutron
star physics.

University of
Hertfordtghire u H



Numerical experiment set-up

e |n our new study, we focus on the response of a two-component fluid
core to a glitch that is driven by the crustal superfluid.

WE mode\ the

NS crust as an

infinitely thin
bOUndary'

Glitch in NS crust
<——— implemented as a
boundary condition:

Un,s(T = R) = Qo(1 +¢)Rsiné

Two-component
fluid core initially

corotating.
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Numerical experiment set-up

e |n our new study, we focus on the response of a two-component fluid
core to a glitch that is driven by the crustal superfluid.

We model the
NS crust as an
infinitely thin

boundary'
Glitch in NS crust
<«——— implemented as a At =
boundary condition: th t 8 \/\/e inCr Goal: StUdy the
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HVBK Equations

e \We focus on the hydrodynamical picture and solve the Hall-Vinen-
Bekarevich—-Khalatnikov (HVBK) equations initially developed for
laboratory superfluid helium with the pseudo-spectral code Dedalus:

T u,and U,
Pn denote the TWO
fluid velocities
aﬂd Qn,s the
mass denS\UeS

W\th Q:Q n+QS'
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HVBK Equations

e \We focus on the hydrodynamical picture and solve the Hall-Vinen-
Bekarevich—-Khalatnikov (HVBK) equations initially developed for
laboratory superfluid helium with the pseudo-spectral code Dedalus:

vis th
T u,and Y kinemaic
Pn denote the.t.wo ViSCOsity of
fluid velocities the normg)
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mass densities the chem;cks
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Characteristic time scales

e For realistic neutron stars, we estimate the mutual
friction and Ekman timescale as follows:
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Characteristic time scales

e F[or realistic neutron stars, we estimate the mutual

friction and Ekman timescale as follows:

For
e\ectron-e\ectron
scattering, We_
have v~10°cmM S
and Ek~107.

e~

T ~ 10 s( An ) ___Pn rot
0.05 104 g cm=3 0.1s 108 K
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Characteristic time scales For o
e

e For realistic neutron stars, we estimate the mutual Off of
friction and Ekman timescale as follows:

For 3 ;
e\ectron-e\ectron nas ~B2

. We
scattering, We

-~

~3/4 =1/4
T ~ 10 s( An ) ___Pn rot
0.05 104 g cm=3 0.1s 10 cm
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Spinning up a single-component fluid |

e After the sudden spin-up, a thin boundary layer forms just below the
crust and causes the bulk fluid to accelerate via Ekman pumping.
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e After the sudden spin-up, a thin boundary layer forms just below the
crust and causes the bulk fluid to accelerate via Ekman pumping.

Un,p(t,7,0) — Up 6(0,7,6)

0.0005

e Asthe evolution progresses, the azimuthal velocity becomes
axisymmetric with constant magnitude over cylindrical surfaces.
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Spinning up a single-component fluid li

e Ekman pumping leads to the formation of a stable
circular flow pattern in each semi-hemisphere.

Streamlines of the meridional flow
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e Ekman pumping leads to the formation of a stable
circular flow pattern in each semi-hemisphere.
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Spinning up a two-component fluid |

e The flow patterns look more complex than
for the single-component case and we find
similar patterns to earlier works in spherical
shells (see Peralta et al. 2005, 2006, 2008).
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normal B =~ 0.003 superfluid
t ~ 500 Q5 e The flow patterns look more complex than

for the single-component case and we find
similar patterns to earlier works in spherical
shells (see Peralta et al. 2005, 2006, 2008).
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Spinning up a two-component fluid |

e The flow patterns look more complex than
for the single-component case and we find
similar patterns to earlier works in spherical
shells (see Peralta et al. 2005, 2006, 2008).

For B~0.75, the
normal fluid no
longer develops
the single cell flow
structure.
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Spinning up a two-component fluid li

e While the initial evolution is qualitatively similar and we obtain con-
stant azimuthal velocities over cylindrical surfaces, the spin-up of
the superfluid is delayed because of the mutual friction coupling.
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Superf\Uid
can only
accelerate once
the Ekman
pump]ng has Spun
up the VisCcouUS

component.

Once differential
rotation builds up,
the superfluid is
coupled via
mutual friction.
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e While the initial evolution is qualitatively similar and we obtain con-
stant azimuthal velocities over cylindrical surfaces, the spin-up of
the superfluid is delayed because of the mutual friction coupling.
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Spinning up a two-component fluid Il

e To extract the spin-up timescale, we fit
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Spinning up a two-component fluid Il

Ek=5x1073
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Spinning up a two-component fluid Il

e To extract the spin-up timescale, we fit

Ek=5x 10" tspin-up () = C15 (AR)B™Y
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Spinning up a two-component fluid Il

e To extract the spin-up timescale, we fit

Ek=5x 10" tspin-up () = C15 (AR)B™Y
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Conclusions & Outlook

We still don't
fully understand
the coupling
dynamics for
low B values.
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Some advertisement: Gl

HOLLOWAY
UNIVERSITY

OF LONDON

| will be joining Royal Holloway (University
of London)’s growing Astronomy group in
October on a Future Leaders Fellowship.

Positions open in the next few years
on modelling pulsar glitches and
machine learning:

2 PhD positions
3 Postdocs

Keep an eye open or come and talk to me
if you want to learn more!

UK Research
and Innovation
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Superfluid Helium-4
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At low temperatures, helium-4 does
not solidify but instead enters a

new fluid phase.

Specific Heat [Jmol ™' K~!]
—
S

2

o

1
Temperature [K]

=]

Normal
component:
Viscous
properties and
heat transport.

University of
Hertfordghire UH



Mutual friction

e Although superfluids flow without friction,
they can experience friction as a result of
vortices interacting with their surroundings.

QQ\c\en‘? Bel In helium 11, the
o getel \r'\or\ coefficients can be
o d‘\ss'\PaU measured. For NSs,
Sﬂeng"h' they need to be
calculated.
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Laboratory glitches

e |Inthe 1970s, Tsakadze and Tsakadze
performed the first (and only!!) syste-
matic study of spin-up in helium II.

Internal superfluid
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Spinning up a two-component fluid IV

e Spin-up timescales for two different Ekman numbers:

(a) Ek=5x1073
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Spinning up a two-component fluid V

e Spin-up timescales for two
different Ekman numbers;

(a) Ek=5x%x1073
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