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Background Superfluid components

Figure 1: Layered neutron star structure.

� Equilibrium neutron stars with
106 − 108K are cold enough to
contain superfluid neutrons and
superconducting protons.

� Cooper pair formation occurs due to
an attractive contribution to the
nucleon-nucleon interaction.

� Observations support the presence of
these macroscopic quantum states.

How do superfluid components affect the star, i.e. its magnetism?
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Background Superconductivity I

� For T > Tcp the matter is normal and the electrical conductivity is
dominated by relativistic electrons. Magnetic field dissipation occurs
via standard Ohmic diffusion on a timescale

τOhm = L2
4πσe

c2
≈ 4.3× 1013

(
L

106 cm

)2 ( σe

1029 s−1
)2

yr. (1)

� Baym, Pethick & Pines (1969) state that for T < Tcp the time to expel
magnetic flux from an initially normal region is

τnucl ∼ τOhm

(
B0

Hc

)2
≈ 107

(
τOhm

1013 yr

) (
B0/Hc

10−3

)2
yr. (2)

� This implies that the superconducting phase transition has to occur at
constant flux and essentially no core field evolution takes place.
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Background Superconductivity II

Figure 2: Superconducting states.

� Magnetic flux can be retained in form of a
type-II fluxtube state or an intermediate
type-I state. The exact phase depends on
the characteristic lengthscales involved:

κ =
λ

ξft
≈ 3

(
m∗p
m

)3
2
ρ
− 5
6

14

( xp

0.05

)− 5
6
(

Tcp

109K

)
>

1√
2
. (3)

� Estimates predict a type-II state in the outer core with

Hc1 =
4πEft
φ0

≈ 1.9× 1014
(

m

m∗p

)
ρ14

( xp

0.05

)
G, (4)

Hc2 =
φ0

2πξ2ft
≈ 2.1× 1015

(
m∗p
m

)2
ρ
− 2
3

14

( xp

0.05

)− 2
3
(

Tcp

109K

)2
G. (5)
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Background Superconductivity III

Figure 3: Density-dependent parameters of NS
superconductivity calculated for the NRAPR

effective equation of state (Steiner et al., 2005). Tcp is
obtained from Ho, Glampedakis & Andersson (2012). � Parameters of superconduc-

tivity are dependent on the
neutron star density, i.e. the
equation of state.

� At higher densities one
eventually has κ < 1/

√
2, so

that the type-II state should
transition into a type-I state.
The critical density is

ρcrit,II→I ≈ 6.4× 1014
(
m∗p
m

)− 9
5
(

0.05
xp

) (
Tcp

109K

)− 6
5
g cm−3. (6)
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Background Nucleating superconductivity

� Magnetohydrodynamical models of superconducting neutron
stars often invoke a type-II fluxtube state to simplify the treatment.

� Models generally discuss the equilibrium case but are not concerned
with the dynamical onset of the phase transition.

� How is the superconducting state formed as the star cools down?
What does the magnetic flux distribution look like?

How does superconductivity nucleate?

Where does τnucl ∼ τOhm

(
B0
Hc

)2
come from?
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Nucleation Set-up (Baym, 1970)

� The superconducting region expands into the normal region: The interface
is positioned at x0(t) and moves with a velocity v(t) = dx0(t)/dt.

� The field B = B(x , t)ẑ in the normal region satisfies standard Maxwell
equations, which combined with Ohm’s law give a diffusion equation

∂2B(x , t)

∂x2
=

4πσ
c2

∂B(x , t)

∂t
≡ 1

D

∂B(x , t)

∂t
. (7)
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Nucleation Diffusive solution I

� Solve the diffusion equation with appropriate boundary conditions.
Thermodynamics dictate the conditions at the interface:

lim
x→∞

B(x , t)→ B0, B(x0(t), t) = Hc,
∂B

∂x

∣∣∣∣
x=x0(t)

= −Hc

D
v(t). (8)

� The problem can be solved by taking into account the self-similarity, i.e.
the absence of a characteristic lengthscale. In this case, we obtain an
implicit time-dependence of the form B(x , t) = B(y) where y ≡ x/x0(t).

� Follow Pippard (1950) and use the ansatz B(y) = Hc[1 + f (y)] to obtain

d2f

dy2
+

x0(t)v(t)

D
y
df

dy
=

d2f

dy2
+ αy

df

dy
= 0. (9)

ECT* Workshop Trento, Italy 7



Nucleation Diffusive solution II

� The definition of α relates the interface position and its velocity. Both
quantities are thus not independent but have to satisfy

x0(t)v(t)

D
= α ⇒ dx20

dt
= 2Dα. (10)

� Integration leads to the following under the assumption that x0(0) = 0

x0(t) = (2Dαt + c1)
1
2 = (2Dαt)

1
2 . (11)

� We find an analytical solution in the limit B0 � Hc:

B(x , t) = Hc

1−
∫ α

[
x

x0(t)
−1

]
0

dξ e
−
[
ξ+ξ2 B0

2Hc

] . (12)
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Nucleation Timescale

� The exact value for α is determined by the third boundary condition:

x0(t) =

(
Hc

B0
2Dt

)1
2
, v(t) =

(
Hc

B0

D

2t

)1
2
. (13)

� The time τnucl to move the
interface a distance L into the
normal conducting phase
(expel magnetic flux), is

τnucl =
L2

D

B0

2Hc
= τohm

B0

2Hc

∼ 1010
(
τOhm

1013 yr

) (
B0/Hc

10−3

)2
yr.

(14)
Figure 4: Nucleation timescales as a function of B0/Hc

for σe = 5.5× 1028 s and L = 106 cm.
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Nucleation vs. Cooling I

Nucleation timescale is very long. Can flux expulsion play any role?

� The transition temperature Tcp is not constant throughout the neutron
star’s interior but density-dependent.

� The superconducting region expands inside the star as it cools down. Its
size depends on the equation of state and pairing gap model.

Figure 5: Two gap models, EoSs with mUrca and p pairing cooling (Ho, Andersson & Graber (2017) submitted).
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Nucleation vs. Cooling II

� Flux can only be expelled if cooling proceeds slower than nucleation.

� Alternatively, compare the lengthscales of cooling and flux expulsion.

Figure 6: Lengthscale comparison for B0/Hc ∼ 10−5 (Ho, Andersson & Graber (2017) submitted).

� For broad gap models, cooling is always faster than flux expulsion.
Only for very narrow gaps and low magnetic fields B0 ∼ 1010 G it
might be possible to create a flux-free spherical shell after t ∼ 105 yr.
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Nucleation 3D problem

Diffusion cannot drive flux expulsion from the entire neutron star core,
but macroscopic flux-free Meissner regions ∼ 1− 10m could exist.

� How would this look like in a more realistic three dimensional scenario?

� Solve the diffusion problem for a spherical superconducting seed
region in axisymmetry and study its growth by deriving a solution for the
induction B(r , θ, t) = fr (r , t) hr (θ)r̂ + fθ(r , t) hθ(θ)θ̂ in normal matter.

� The angular functions are determined by Legendre polynomials,
whereas the radial contributions are obtained by solving the equations

d2fr
dy2

+

(
4
y
+ αy

)
dfr
dy

= 0, fθ = fr +
y

2
∂fr
∂y

, (15)

under appropriate boundary conditions.
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Next steps

� In the limit B0 � Hc, a bit of algebra leads to the expulsion timescale

τnucl,3D =
L2

D

B0

2
√

6Hc
≈ 0.4τnucl,1D. (16)

� The expansion of the spherical interface is likely to become unstable.
At what radius does this happen and could the perturbation of the
interface lead to shorter flux expulsion timescales?

Modelling the actual structure of the superconducting state
through the phase transition should require a Ginzburg-Landau

approach as is done for laboratory superconductors.
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Thankyou.

Anyquestions?
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