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Neutron Stars Formation

� Neutron stars are one type of
compact remnant, created during
the final stages of stellar evolution.

� When a massive star of ∼ 8− 30M�
runs out of fuel, it collapses under
its own gravitational attraction and
explodes in a supernova.

� During collapse, electron captures
(p + e− → n + νe) produce neutrons.

� NS have radii between 9− 13 km
and weigh 1.2− 2.2M�, resulting in
densities up to ρ ' 1015 g cm−3.

Figure 1: Snapshot of 3D core-collapse
supernova simulation (Mösta et al., 2014).
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Neutron Stars Structure

� The interior structure is complex
and influenced by the (unknown)
equation of state. However, there
is a canonical understanding.

� After ∼ 104 years neutron stars
are in equilibrium and have
temperatures of 106 − 108 K. They
are composed of distinct layers.

� For our purposes, we separate
neutron stars into a solid crust
and a fluid core, containing three
distinct superfluid components.

Figure 2: Sketch of the neutron star interior.
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Neutron Stars Quantum condensates

� Neutron stars are hot compared to low-temperature experiments on
Earth, but cold in terms of their nuclear physics (Migdal, 1959).

� Neutrons and protons are fermions and can become unstable to
Cooper pair formation due to an attractive contribution to the
nucleon-nucleon interaction potential.

� The pairing process is typically described within the microscopic
BCS theory of superconductivity (Bardeen, Cooper & Schrieffer, 1957).

� Compare the equilibrium to the nucleons’ Fermi temperature:

TF = k−1B EF ∼ 1012 K� 106 − 108 K. (1)

Neutron star matter is strongly influenced by quantum mechanics!
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Neutron Stars Transition temperatures

� Detailed BCS calculations provide the pairing gaps ∆, which are
associated with the critical temperatures Tc for the superfluid
and superconducting phase transitions.

Figure 3: Left: Parametrised proton (singlet) and neutron (singlet, triplet) energy gaps as a function
of Fermi wave numbers (Ho, Glampedakis & Andersson, 2012). Right: Critical temperatures of

superconductivity/superfluidity as a function of the neutron star density. The values are computed for
the NRAPR equation of state (Steiner et al., 2005; Chamel, 2008).
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SC Background A few basics

Figure 4: Magnetisation curves for a type-I (left)
and type-II (right) medium with the same Hc.

� Superconductors are
materials characterised
by vanishing electrical
resistance (perfect
conductors) and expul-
sion of magnetic flux.

� They are often studied by their response to an external field H,
providing information about the internal magnetisation. Due to their
distinct responses, we historically distinguish type-I and type-II media.

� Many superconductor features close to the transition temperature are
well described with the phenomenological Ginzburg–Landau model.
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SC Background The (old) type-II picture

Figure 5: Type-II and intermediate type-I
state (Brandt & Essmann, 1987).

� Due to high conductivity, the magnetic flux
cannot be expelled from their interiors ⇒
neutron stars do not exhibit Meissner effect
and are in a metastable state (Baym, Pethick

& Pines, 1969; Ho, Andersson & Graber, 2017).

� State depends on characteristic lengthscales and standard considera-
tions give κ = λ?/ξft > 1/

√
2 in the outer core, i.e., a type-II state with

Hc1 = 4πEft/φ0 ∼ 1014 G, Hc2 = φ0/(2πξ2ft) ∼ 1015 G. (2)

� Each fluxtube carries a flux quantum φ0 = hc/2e ≈ 2.1× 10−7 Gcm2.
All flux quanta add up to the total magnetic flux, so that the averaged
magnetic induction is related to the fluxtube area density Nft:

B = Nftφ0, → Nft ≈ 4.8× 1018
(
B/1012 G

)
cm−2. (3)
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SC Background Induction equation

� Magnetic field evolution in the outer core should be related to the
mechanisms affecting the fluxtubes’ motion, but these are rather poorly
understood (Muslimov & Tsygan, 1985; Graber, 2017, e.g.).

� It is possible to use techniques of classical magnetohydrodynamics to
derive a superconducting induction equation (Graber et al., 2015). For
the standard coupling mechanism (electron scattering), one finds:

∂tB
i ≈ εijk∇j

[
εklmv

l
pB

m − κB

2π
m

m∗p

(
B′B̂ l∇l B̂k + BεklmB̂ l B̂ s∇s B̂

m
)]
, (4)

with inertial, conservative (Hall-like) and dissipative (Ohmic-like) term.

� The corresponding timescales are too slow to drive field evolution on
observable timescales, i.e., τdiss ≈ 109 yrs and τcons ≈ 1011 yrs.
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Micro model Motivation

� Our understanding of macroscopic NS superconductivity is mainly based
on time-independent equilibrium and single-component considerations.

� It is unclear what happens in the stellar interior at different densities as
the star cools below Tc and when entrainment is included ⇒ how can we
better understand the SC phase and its formation?

� Focus on the two-condensate aspect and expand on earlier works by
Alpar, Langer & Sauls (1984); Charbonneau & Zhitnitsky (2007); Alford &
Good (2008); Haber & Schmitt (2017); see also Kobyakov (2020).

Wood, Graber & Newton (2020): Employ techniques for laboratory
systems to construct phase diagrams by deducing the protons’

ground state in presence of a magnetic field as a function of density.
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Micro model Galilean invariant GL model

� With entrainment, velocity-dependent terms in energy density read

Fvel = 1
2ρp|Vp|2 + 1

2ρn|Vn|2 − 1
2ρ

pn|Vp − Vn|2 , (5)

where ρp and ρn are the true mass densities, the coefficient ρpn < 0
determines the strength of entrainment (Andreev & Bashkin, 1975) and Vp,n

are superfluid velocities related to canonical momenta, i.e., ∝ ∇argψx.

� In a mean-field framework, entrainment first enters at 4th order in ψn,p

and 2nd order in their derivatives, i.e., we require a linear combination of

|ψx |2|∇ψy |2, ψxψy∇ψ?x ·∇ψ?y , ψxψ
?
y∇ψ?x ·∇ψy , ψ

?
xψ

?
y∇ψx ·∇ψy , (6)

where x , y ∈ {p, n}. Galilean invariance can be used to simplify the sum
and is crucial to link our energy density to nuclear physics models.
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Micro model Helmholtz free energy density

� Total Helmholtz free energy density is obtained by adding entrainment
terms to the usual free energy of a two-component superconductor, and
introducing the magnetic vector potential A by minimal coupling:

F [ψp, ψn,A] = F0 − µp|ψp|2 − µn|ψn|2 +
gpp

2
|ψp|4 +

gnn

2
|ψn|4 + gpn|ψp|2|ψn|2

+
}2

4mu

∣∣∣∣(∇− 2ie
}c

A
)
ψp

∣∣∣∣2 +
}2

4mu
|∇ψn|2 +

1
8π
|∇× A|2

+ h1

∣∣∣∣(∇− 2ie
}c

A
)

(ψ?nψp)

∣∣∣∣2 + 1
2 (h2 − h1)∇(|ψp|2) ·∇(|ψn|2)

+ 1
4h3

(∣∣∇(|ψp|2)
∣∣2 +

∣∣∇(|ψn|2)
∣∣2) , (7)

where F0 is an arbitrary reference level and proton Cooper pairs have
charge 2e. µp and µn are the chemical potentials, while gpp and gnn define
the self-repulsion of the condensates, and gpn their mutual repulsion.
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Micro model Skyrme connection

� We use the full Skyrme model to determine the stellar composition
(solving for baryon conservation, charge neutrality, beta equilibrium and
equilibrium due to weak processes) (Chamel, 2008) but a separate SF/SC
gap parametrisation (Andersson, Comer & Glampedakis, 2005; Ho et al., 2015).

� We also connect the Skyrme interaction to our energy functional to obtain
coefficients hi that allow a realistic description of the stellar interior:

h1 = C τ0 − C τ1 , h2 = −4C∆ρ
0 + 4C∆ρ

1 , (8)

h3 = h4 = C τ0 + C τ1 − 4C∆ρ
0 − 4C∆ρ

1 . (9)

� The parameter h1 controls the entrainment (Chamel & Haensel, 2006)

ρpn = − 2
}2

h1ρnρp. (10)
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Micro model Two thought experiments

� To find the ground state in the presence of an imposed magnetic field,
we can control (i) the magnetic flux density, B = ∇× A, by imposing a
mean flux B, or (ii) the thermodynamic external magnetic field H.

� Case (i) approximates the neutron star interior, which becomes super-
conducting as the star cools in the presence of a pre-existing field.

Figure 6: Phase diagrams for a one-component superconductor, for different values of the Ginzburg-Landau
parameter, κ. The experiment with an imposed external field, |H|, in nondimensional units is shown on the left,

while the right panel shows the phase transitions in the experiment with an imposed mean flux, B.
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Micro model Energy per flux quantum

� We solve the Euler-Lagrange equations with quasi-periodic boundary
conditions (Wood et al., 2019), which involves specifying the domain size
Lx × Ly , and the number N of magnetic flux quanta within the domain
⇒ different choices allow comparing square and hexagonal lattices.

� The Helmholtz free energy per magnetic flux quantum per unit length is

10 20 30 40 50
a

12.725

12.750

12.775

12.800

12.825

12.850

12.875

F

hexagonal lattice

square lattice

non-superconductor

F ≡ 1
N

∫ Lx

x=0

∫ Ly

y=0
F dx dy .

(11)
Figure 7: Helmholtz free energy per flux

quantum per unit length, F , as a function
of the area per magnetic flux quantum,

a = 2π/B, for the NRAPR EoS at
nb = 0.2831/fm3. The energy in the

square (long-dashed, cyan) and hexagonal
(solid, blue) lattice states matches
smoothly onto the energy of the

non-superconducting state (short-dashed,
purple) at a ' 12.9.
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Micro model Inhomogeneous ground states

� Choosing a sufficiently large domain, and values of a, we obtain examples
of inhomogeneous ground states ⇒ for NRAPR at nb = 0.2831/fm3

with a = 14.5 plus N = 24 (left) and a = 52 plus N = 14 (right).

� In both cases, the aspect ratio is
√

3 and the pure hexagonal lattice a
possible state but not the ground state ⇒ F is lower than for pure lattice.

Figure 8: Inhomogeneous ground states for NRAPR. Brightness and hue indicate density and phase of the proton
order parameter, ψp, respectively. The left panel shows a mixture of non-superconducting protons and hexagonal

fluxtube lattice, while the right one is mixture of Meissner state and hexagonal fluxtube lattice.
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Micro model Phase diagrams LNS

� When such mixed states are present, second-order phase transitions are
replaced by first-order transitions at Hc1′ < Hc1 and Hc2′ > Hc2.

� We can determine critical fields (partially semi-analytically, partially
numerically) and construct phase-diagrams of the superconducting state
throughout the neutron star core. For the LNS equation of state:

Figure 9: Phase diagrams for LNS. There are inhomogeneous regimes of the Meissner/Non-superconducting
(M/N), Meissner/Fluxtube (M/F) and Fluxtube/Non-superconducting (F/N) states.
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Micro model NRAPR, SLy4, SQMC700
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Micro model Ska35s20, Skχ450

Seminar, UB graber@ice.csic.es 21



Micro model Implications

� Entrainment causes type-1.5 SC due
to fluxtube repulsion on short scales
and attraction on large scales ⇒ when
imposing B, mixed states appear.

� For typical EoSs, the outer core of
pulsars with . 1014 G is not a type-II
superconductor but mainly a type-1.5
system, where magnetic flux is
irregularly distributed and retained.

� In the inner core, flux is distributed in
an intermediate type-I state. The
transition can be estimated via:

Figure 10: Magnetic decoration image of
multi-band superconductor

Mg2B (Moshchalkov et al., 2009).

λ?
ξft

=
1√
2

√
1 + h1

nn

np
. (12)
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Micro model Flux distribution

Figure 11: Zoomed-out version of the LNS phase diagram for a fixed mean flux (left).
Schematic representation of the magnetic flux at the transition from outer to inner core (right).

� At low densities, protons are in a type-1.5 regime, where flux is
quantized into thin fluxtubes (orange) of preferred separation (overall
confined to a small fraction of the total volume).

� In the type-I inner core, flux is contained in macroscopic regions of
normal conductivity (light blue) that alternate with flux-free regions.
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Micro model Caveats

� We assume that the Skyrme model correctly describes interactions up
to the neutron star centre. If exotic particles / non-nucleonic matter are
present, this would modify the picture at high densities.

� Our superfluid gap models (p: CCDK, n: TToa) are motivated by
cooling observations of the Cas A supernova remnant but inconsistent
with the mean-field description of the interacting particles.

� Our Ginzburg–Landau model is time-independent and neglects
rotation, i.e., we do not capture dynamics or incorporate neutron
vortices yet, which are crucial to get the full macroscopic picture.

� For a full dynamical model, we would need to incorporate the normal
electron component. We do not have the formalism to consistently
include such a (particle) component in the Ginzburg–Landau model yet.
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Micro model Conclusions

� Neutron stars contain (at least) three superfluids that influence the
stars’ macroscopic properties. Theoretical modelling is difficult ⇒ use
laboratory counterparts to understand them better.

� We use a phenomenological two-component Ginzburg–Landau
model and connect it to the Skyrme interaction to determine the
protons’ ground state throughout the neutron star core ⇒
inhomogeneous flux distributions exist in most of the core.

� Magnetic field evolution in the core is poorly understood but crucial
to explain observed field changes in pulsars (Narayan & Ostriker, 1990),
the high activity of magnetars (Thompson & Duncan, 1995), or neutron
star ‘metamorphosis’ (Viganò et al., 2013) ⇒ to develop macroscopic
models we need to better understand microphysics.

Seminar, UB graber@ice.csic.es 25



The end
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Appendix Thought experiments

� To find the ground state for our system in the presence of an imposed
magnetic field, we can perform two distinct experiments: we control (i)
the magnetic flux density, B = ∇× A, by imposing a mean or net
magnetic flux, or (ii) the thermodynamic external magnetic field, H.

� In the first case, we minimise the Helmholtz free energy, F = 〈F 〉,
where the angled brackets represent some kind of integral over our
physical domain ⇒ closely approximates the conditions in the neutron star
core, which becomes superconducting as the star cools in the presence of
pre-existing magnetic field. The ground state can be inhomogeneous.

� In the second case, we minimise the dimensionless Gibbs free energy,
G = F − 2κ2H · 〈B〉. In an unbounded domain, the ground state is
guaranteed to be homogeneous, and the phase diagram simpler.
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Appendix Euler-Lagrange equations

� Whether we work with F or G, we obtain the same equations of motion:

κ2∇× (∇× A) = =
{
ψ?p(∇− iA)ψp +

h1
ε
ψnψ

?
p(∇− iA)(ψ?nψp)

}
, (13)

∇2ψn = R2(|ψn|2 − 1)ψn + α(|ψp|2 − 1)ψn

− h1ψp(∇ + iA)2(ψ?pψn)

− ψn∇2
(
h2 − h1

2
|ψp|2 +

h3
2ε
|ψn|2

)
, (14)

(∇− iA)2ψp = (|ψp|2 − 1)ψp +
α

ε
(|ψn|2 − 1)ψp

− h1
ε
ψn(∇− iA)2(ψ?nψp)

− ψp∇2
(
h2 − h1

2ε
|ψn|2 +

h3
2
|ψp|2

)
. (15)
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Appendix Energy minimisation

� F is approximated numerically on a regular 2D grid. The order parameters
ψp and ψn are defined on the gridpoints as ψi,j

p and ψi,j
n , while the vector

field A has two components, (Ax ,Ay ), defined on the corresponding links
between the gridpoints, i.e., we have A

i+1/2,j
x and A

i,j+1/2
y .

� The gauge coupling between ψp and A is implemented using a Peierls
substitution to preserve (discrete) gauge symmetry, e.g.,∣∣∣∣( ∂

∂x
− iAx

)
ψp

∣∣∣∣ =

∣∣∣∣ ∂∂x exp(−
∫

iAx dx)ψp

∣∣∣∣
⇒
∣∣∣∣( ∂

∂x
− iAx

)
ψp

∣∣∣∣i+1/2,j

' 1
δx

∣∣∣exp(−iAi+1/2,j
x δx)ψi+1,j

p − ψi,j
p

∣∣∣ . (16)

� This leads to a discrete approximation Fdis[ψi,j
p , ψ

i,j
n ,A

i+1/2,j
x ,A

i,j+1/2
y ] and

we obtain the ground state using a gradient-descent, iteration method.
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Appendix SC formation

� In the outer core, initially, only protons are superconducting (neutrons
remain normal), so we model the formation of the superconducting
phase with a single-component time-dependent Ginzburg-Landau model.

� Study the dynamics of the phase transition under different circum-
stances in analogy to numerical experiments of laboratory systems (Liu,

Mondello & Goldenfeld, 1991; Frahm, Ullah & Dorsey, 1991).

Figure 12: Evolution of the magnetic field in a type-I system in the nucleation regime.
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