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Background

e We have detected ~2800 pulsars,
with ~2000 being isolated. They
have diverse characteristics, visible
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e We obtain more & better data, e.g.,
for ~400 objects proper motions NS birth vs. galactic CCSN rates
are known (~200 for isolated ones). (Keane & Manchester 2008).

e Galactic CCSN rate insufficient for independent formation of
different classes — evolutionary connection / metamorphosis?



Pulsar population synthesis

e We only observe a very small fraction of the ~10° neutron
stars, expected to be present in the Milky Way.

e Instead of studying pulsars on an individual level, a popular
approach has been / is to look at the entire population:

o model birth properties with a Monte-Carlo approach,
o evolve parameters forward in time,
o compare mock sample to observations to constrain input.

e Provides information about birth rates, initial distributions
of periods/kick velocities/magnetic fields/etc. — connected to
stellar evolution, GRBs, FRBs, peculiar supernovae and more.



Motivation

e Revisit the problem of population
synthesis and specifically

o look at / work towards new data
m c.g. FAST / SKA / Athena. SKA Organisation
o improve on / use updated physical input
m e.g. galactic model, e density model, emission physics.
o model various NS classes consistently
m combine observations in different wave bands.
o use new computational techniques for parameter estimation
m implement machine learning pipelines.



Dynamical evolution

Number of NSs

e Focus on positional & velocity
evolution and largely follow
Faucher-Giguere & Kaspi (2006) with
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o spiral arm model of Yao et al. (2017)
plus rigid rotation with T = 250 Myr.

o galactic model of Marchetti et al. (2019).

o exponential disk with scale height h .

o single-component Maxwell kick-velocity
distribution with dispersion o
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e Evolve 10° stars for (up to) 107 yr until Stellar density & velocities in
ICRS coordinates for fiducial

today, i.e., birth rate of 1 NS/century. ,icch - 018 kpe, o = 265 kim/s.



Machine learning framework

¢ Given input density & velocity maps, predict parameters h_
and o, that control the final pulsar population — use a convo-
lutional neural network for this regression problem.

e We simulate populations by varying h and/or o, (labels) & then
perform a range of supervised learning experiments varying,
e.g., resolution, channels, architecture, and hyperparameters.
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Training results

e With RMSE as loss function & validation metric, Kaiming initia-
lisation & Adam for gradient-descent optimisation, we find for a
data-set with 128 x 128 samples (80/20% training/valid. split):
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CNN validation results for g, in two-parameter experiment: RMSE = 8.8 km/s & MRE = 0.039.



Training results

e With RMSE as loss function & validation metric, Kaiming initia-
lisation & Adam for gradient-descent optimisation, we find for a
data-set with 128 x 128 samples (80/20% training/valid. split):
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CNN validation results for h_in two-parameter experiment: RMSE = 0.038 kpc & MRE = 0.061.



Selection biases

e So far, our simplified approach has neglected selection effects
and observational biases — use a phenomenological app-
roach to analyse possible changes in network performance.

e Use proper motion and distance
estimates for 216 isolated pulsars
. to deduce empirical selection
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Resampled experiments

e Analyse the CNN’s predictive power as a function of available
data points (i.e. NSs) by resampling our fiducial simulation —
accuracy strongly depends on observed number of objects.
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Conclusions & outlook

e We studied possibility of using ML to reconstruct the dynamical
birth properties from evolved pulsar populations — specifically
focus on the kick-velocity & scale-height distribution.

¢ We find absolute uncertainties o, ~ 10 km/s & h ~ 0.05 kpc,
and relative uncertainties of 0.01 for both — in realistic sce-
narios, these will be lower & strongly limited by observations.

e Current and future directions involve implementing

o magnetorotational evolution (additional free parameters)
o selection effects (emission, relevant surveys)
o update our ML framework for multi-dimensional inference



