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• Understand anomaly detection problems.

• Understand the methods used for anomaly detection.

• Be able to identify, which algorithm to use for a particular 
problem set.

• Be able to implement this approach in Python.

Learning outcomes
After the two lectures, you will:
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Reading materials
Two PDFs can be found on Canvas



• “We are drowning in information, 
while starving for wisdom.” Consi-
lience: The Unity of Knowledge 
(1998), biologist E. O. Wilson

• Anomalous events occur relatively 
infrequently.

• However, when they do occur, 
their consequences can be 
dramatic and often negative.
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Anomalies
And what they mean

Anomalies can be like 
needles in a haystack.



• An anomaly is a pattern in the data that 
does not conform with the expected 
behaviour. They are also referred to as 
outliers, exceptions, peculiarities, 
surprises, novelties, incongruences, etc.

• Historically, the field of statistics dealt 
with anomalies to find and remove 
outliers to improve analyses. There are 
now many fields, where anomalies are 
the topic of greatest interest.
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To detect them, we need to 
identify objects, events, etc. 
that are different from most 

other objects, events, etc.

Anomaly detection
“The odd one out”



• Some data elements are part of a different class 
of objects or produced by a different underlying 
mechanism (e.g., disease vs. no disease or 
fraud vs. no fraud).

• Data elements can originate from the tails of an 
underlying Gaussian distribution.

• The underlying process has a natural variation 
(e.g., extreme weather events).

• The underlying data was measured, and collec-
tion errors were made (e.g., human, equipment).
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Causes of anomalies
Several primary causes



• Defining a representative normal region is challenging.
• Boundary between normal & outlying behaviour is often imprecise.
• Exact notion of an outlier varies between application domains.
• Data labels for training/validation unavailable.
• Malicious adversaries are unpredictable.
• Normal behaviour evolves with time.
• Data might contain noise.
• Selection of relevant features is difficult.
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Key challenges in anomaly detection
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• In the remainder of this class, we will look at several more of the methods 
of anomaly detection (following Chandola et al. (2008) – Anomaly Detec-
tion: A Survey; see reading materials):

Anomaly detection

Contextual anomaly 
detection

Collective anomaly 
detection

Online anomaly 
detection

Distributed anomaly 
detection

Point anomaly detection

Classification based

Rule based

Neural-networks based
SVM based

Nearest-neighbour based

Distance based

Density based

Statistical

Parametric

Non-parametric

Clustering based Others

Information-theory based

Spectral-decomposition based

Visualization based

Taxonomy of techniques
An overview of anomaly detection approaches
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see unit 8

• In the remainder of this class, we will look at several more of the methods 
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• In the remainder of this class, we will look at several more of the methods 
of anomaly detection (following Chandola et al. (2008) – Anomaly Detec-
tion: A Survey; see reading materials):



• The key assumption here is that normal data instances occur in 
regions of high probability of a statistical distribution, while 
anomalies occur in the low-probability regions.

• The general approach is as follows:
• Estimate a statistical distribution for a given dataset.
• Apply a statistical inference test to determine if               

a test instance belongs to this distribution or not.
• If an observation is more than 3 standard deviations 

away from the sample mean, we call it an anomaly.

Statistical techniques
An overview
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Anomalies have large values       for a given        test statistic.



• Applying a statistical test depends on
• the properties of the test instance.
• the parameters of the model such as the mean or the variance.
• the confidence limit, which is related to the number of expected outliers.

• We can distinguish two types of approaches:
• Parametric techniques: We assume that the normal (and possibly anomalous) 

data are generated from an underlying parametric distribution. We then fit the 
distribution parameters from the training data.

• Non-parametric techniques: We do not assume any knowledge of underlying 
distributions and use non-parametric techniques (e.g., histograms) to estimate 
the density of the distribution and its parameters.

Statistical techniques
An overview

14



Statistical techniques
Pros and cons

ADVANTAGES
• We can readily apply a range of 

existing statistical tools.

• Statistical tests are well-
understood and well-validated.

• These tools allow a quantitative 
measure of the degree to which 
and object is an outlier.

• This provides a statistically 
justifiable solution to detect 
anomalies.

DISADVANTAGES

• Datasets might be hard to model 
parametrically (e.g., if they have 
multiple modes or varying density).

• The parametric assumptions might 
not actually hold.

• In high dimensions, we might have 
insufficient data to estimate the 
true underlying distribution, which 
complicates the construction of 
hypothesis tests.
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• A common approach assumes that normal data follow a Gaussian 
distribution. Based on this, we then determine the “shape” of the data 
and define outliers as those which stand far away from the fit shape.

• For a univariate Gaussian distribution, outliers can be obtained by 
comparing the z-score (standard score) to a specific threshold:

Statistical techniques
Parametric approaches: univariate Gaussians
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z-scores denote the number   
of standard deviations, σ,   

with which certain values are 
above or below the mean, µ.

z =
x − µ
σ



• Another method to detect outliers in univariate data that is assumed to 
come from a normally distributed population is the Grubbs test.

• It detects one outlier at a time. If a point is an               
outlier, it is removed from the dataset. The test       
is then iterated until no outliers remain. The       
test is defined for the hypothesis (for a dataset of size N):

Statistical techniques
Parametric approaches: Grubbs’s method for univariate Gaussians
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H0: There are no outliers     
in the dataset.

H1: There is exactly one 
outlier in the dataset.

Reject H0 at level 𝛼 if :

G >
𝑁 − 1
𝑁

𝑡!/ #$ ,$&#
# 	

𝑁 − 2 + 𝑡!/ #$ ,$&#
# 	

G ≡ max'(),…,+ x' − µ
σ



• For multi-variate Gaussian distributions, we need to think carefully 
about what “far” away from a certain distribution shape means.

• For correlated features, calculating the            
standard Euclidean distance from a         
data point to the distribution’s centre        
gives misleading results.

Statistical techniques
Parametric approaches: multi-variate Gaussians
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In 2D, we have:

d p), p# = (x) − x#)#+(y) − y#)#



• We require a “better” distance 
measure that includes the covari-
ances of our data. 

• For a distribution Q, with mean	�⃗� 
and covariance matrix, S, the so-
called Mahalanobis distance is 
defined as

Statistical techniques
Parametric approaches: multi-variate Gaussians
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d �⃗�, �⃗�; 𝑄 = (�⃗� − �⃗�),𝑆&)(�⃗� − �⃗�)This is the multi-variate 
generalisation of the z-score.



Statistical techniques
Mahalanobis distance
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• Let’s look at another example:

As the data are not spherically 
distributed, the Euclidean 

distance would identify point 
B as an outlier. However, 
point A is less compatible   

with the data points.



Statistical techniques
Mahalanobis distance: scikit-learn implementation

21

• Scikit-learn contains a number of covariance estimators. For details see 
https://scikit-learn.org/stable/modules/covariance.html. 

• Several of these are sensitive to the             
presence of outliers. However,                 
robust covariance estimation (using                     
MinCovDet()) allows us to down-         
weigh those contaminations.

The method fits ellipses to the 
central data points ignoring the 

points outside the central mode.

https://scikit-learn.org/stable/modules/covariance.html


Statistical techniques
Mahalanobis distance: scikit-learn implementation
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• Scikit-learn contains a number of covariance estimators. For details see 
https://scikit-learn.org/stable/modules/covariance.html. 

• Several of these are sensitive to the             
presence of outliers. However,                 
robust covariance estimation (using                     
MinCovDet()) allows us to down-         
weigh those contaminations.

The Mahalanobis distance is used 
as a measure of outlyingness.

https://scikit-learn.org/stable/modules/covariance.html


Statistical techniques
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A comparison 
with earlier 

approaches.



Statistical techniques
Pearson’s chi-square statistic
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• Here, D is the dimension of the multi-
variate data and µ- the mean along 
the jth dimension of observed data.

χ# =?
-()

. (x- − µ-)#

µ-

• For multi-variate categorical data, we can generally determine whether a 
point is an outlier by using the Pearson’s chi-square test for statistical 
hypothesis testing (provided that the observed dataset is large).

• We can test that a point, x, is not an outlier (i.e., it follows the same 
distribution as the observed data; the null hypothesis) by calculating  
the following test statistic, which follows the chi-square distribution:



• If χ# is larger than a given 
threshold, then we reject the 
null hypothesis and adopt the 
alternative hypothesis. Our x 
is therefore likely an outlier.

Statistical techniques
Pearson’s chi-square statistic
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χ# =?
-()

. (x- − µ-)#

µ-



• To detect anomalies using these approaches, we assume that a dataset, 
D, contains samples from a mixture of two probability distributions: the 
majority distribution (M) and the anomalous distribution (A).

Statistical techniques
Likelihood-based approaches

D = 1 − λ M + λA• The distribution of our data is then given by

• More specifically, M is a probability distribution 
estimated from our data (based on any kind of 
modelling method, e.g., naïve Bayes, maximum 
entropy, etc.). In contrast, A is initially assumed 
to be a uniform distribution.
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• We initially assume that all data points belong to M and let LLt(D) be the 
log-likelihood of D at a given time t. We can calculate the latter as follows:

• For each point xt in M, we move it to A and        
let LLt+1(D) be the new likelihood. We then      
compute the different Δ = LLt+1(D) - LLt(D).

Statistical techniques
Likelihood-based approaches
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L! =#
"#$

%
P&(x") = 1 − λ |(!|#

)"∈(!
P(!(x") λ|+!|#

)"∈+!
P+!(x")

LL! = |M!|	log 1 − λ +.
"!∈$"

log P$" x% + |A!|	logλ +."!∈&"
log	P&"(x%)

If Δ larger than some threshold, 
c, we declare xt  an anomaly and 

move it permanently to A. 



• In the remainder of this class, we will look at several more of the methods 
of anomaly detection (following Chandola et al. (2008) – Anomaly Detec-
tion: A Survey; see reading materials):
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Other techniques
Visualisation approaches

29

• An intuitive approach for point anomaly detection uses visualisation 
tools. These techniques complement other approaches as they (only) 
provide an alternate view of our data, which is then inspected manually. 

ADVANTAGES
• These are quick and suitable for 

an initial analysis of low-
dimensional data.

• The data scientist is kept in the 
loop during the analysis.

DISADVANTAGES

• Anomalies are detected visually 
which makes things subjective.

• Unsuitable for outlier detection in 
aggregation or partial views of 
high-dimensional data.

• Not suitable for real-time analyses.



• The key idea here is that outliers significantly alter the information content 
in a dataset. Anomaly detection then requires us to find those data 
instances that have a strong impact on the data’s information content.

Other techniques
Information-theory based approaches
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ADVANTAGES
• These approaches do not require 

any labels and can operate in an 
unsupervised mode.

DISADVANTAGES

• We require an information theoretic 
measure that is sensitive enough to 
detect anomalies.



• A range of measures have been used for this purpose. One commonly 
used example in information theory is the so-called entropy.

• For a dataset D, where each data item, x,       
belongs to a class CD and P(x) is the pro-       
bability of x in D, the entropy of D relative       
to this |CD|-wise classification is defined as:

Other techniques
Theoretic measure: entropy
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H(D) =.
"∈'#

P x 	log
1

P(x)

H measures the level of uncertainty / disorder / impurity of a collection 
of data. Smaller values correspond to ordered / purer datasets.



• PCA is a dimensionality reduction tool that 
aims to identify directions of largest variation 
within a dataset. Mathematically, this corres-
ponds to determining eigenvectors, λ = (λ),
… , λ/), of the covariance matrix.

• Let’s consider a test point, x, and perform 
PCA to obtain the principal components, y),
… , y/. Then the sum of standardised princi-
pal component scores follows a chi-square 
distribution with q ≤ p degrees of freedom.

Other techniques
Principal component analysis (PCA)
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.
%()

* y%+

λ%
=
y)+

λ)
+⋯+

y*+

λ*



• Given a significance level, 𝛼, our        
point x is then an outlier if

• Alternatively, we could also investigate the last few components of 
the PCA. Anomalies have high values for the following quantity

Other techniques
Principal component analysis (PCA)
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.
%()

* y%+

λ%
> χ*+(α)	

.
%(,-.

* y%+

λ%
	



• In general, we observe that the first few 
principal components capture the varia- 
bility of the normal data. The higher PCA 
components are small and remain constant. 
In contrast, outliers will show variability in 
these higher components.

Other techniques
Principal component analysis (PCA)
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PCA reduces the dimensionality of a dataset and results 
in a simple classifier that is a function of only a few of the 

principal components. This makes it a fast method.



• In the remainder of this class, we will look at several more of the methods 
of anomaly detection (following Chandola et al. (2008) – Anomaly Detec-
tion: A Survey; see reading materials):
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Types of anomalies
Contextual anomalies

• Contextual anomaly: An individual data instance is anomalous 
within a specific context. This requires a notion of context. 
• Such anomalies are also referred to as conditional anomalies (see 

e.g., Song et al., Conditional Anomaly Detection, IEEE,19, 5, 2006).

Normal 
behaviour Anomalous 

behaviour

36



Contextual anomalies
An overview

• To detect contextual anomalies, we make the key assumption that 
all normal instances within a context are similar (in terms of their 
behavioural attributes), while anomalies will behave differently.

• Anomaly detection then involves the following steps:
• Identify context around a data instance using a set of contextual attributes.
• Determine if a test data instance is anomalous within this context.
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ADVANTAGES
• Detect anomalies hard to 

identify in a global context.

CHALLENGES

• Identify a suitable set of contextual attributes.

• Determine context using these attributes.



Contextual anomalies
Contextual attributes

• Contextual attributes define a neigh-
bourhood (context) for a given 
instance. These can, e.g., include
• Spatial context (e.g., latitude and 

longitude)
• Graph context (e.g., edges and weights)
• Sequential context (e.g., position in a 

series or time)
• Profile context (e.g., user demographic)
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Contextual anomalies
Techniques

• To detect contextual anomalies, we follow two main approaches.

• Reduction to point anomaly detection
• We first segment data using our contextual attributes.
• Apply a traditional AD algorithm on behavioural attributes in segments.
• However, contextual attributes often cannot be segmented easily.

• Utilise structure in data
• We can build models from the data using contextual attributes, such as 

time series models (ARIMA, etc.; see earlier lectures).
• Models automatically analyse data instances with respect to their context.

39



Contextual anomalies
An example for conditional anomalies; Song et al. (2006)

• The authors represent data points in a dataset as [x, y], where x denotes 
contextual attributes and y denotes behavioural attributes. Then, a mixture of 
NU Gaussian models, U, is learnt from the contextual data, while a mixture of 
NV Gaussian models, V, is learnt from the behavioural data.

• The authors than determine a mapping p(Vj|Ui) which indicates the probabi-
lity of the behavioural attributes being generated by component Vj when the 
contextual aspects are generated by component Ui.

• This approach allows us to answer the following kinds of questions:
• How likely is the contextual part to be generated by a component Ui of U?
• What is the probability of a behavioural attribute to be generated by Vj?
• Given Ui, what is the most likely Vj that will generate the behavioural attributes?
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• In the remainder of this class, we will look at several more of the methods 
of anomaly detection (following Chandola et al. (2008) – Anomaly Detec-
tion: A Survey; see reading materials):
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Types of anomalies
Collective anomalies

• Collective anomaly: A collection of 
related data instances is anomalous.

• This requires a (sequential, spatial, 
or graph) relationship among data 
instances.

The individual instances within a 
collective anomaly are not 
anomalous by themselves.

Collective anomalous 
behaviour

42



Collective anomalies
Overview of techniques

• To detect collective anomalies, we take advantage of the relation-
ships between data instances in a dataset. We can distinguish:

43

• Sequential anomaly detection to 
detect anomalous sequences.

• Spatial anomaly detection to 
detect anomalous sub-regions in 
spatial data.

• Graph anomaly detection to 
detect anomalous sub-graphs in 
graph data.



Collective anomalies
Overview of techniques

• To detect collective anomalies, we take advantage of the relation-
ships between data instances in a dataset. We can distinguish:
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• Sequential anomaly detection to 
detect anomalous sequences.

• Spatial anomaly detection to 
detect anomalous sub-regions in 
spatial data.

• Graph anomaly detection to 
detect anomalous sub-graphs in 
graph data.



Collective anomalies
Sequential anomaly detection

•A number of AD techniques have been      
proposed for symbolic sequences. However,
• Techniques often apply to a single domain only.
• Little comparative evaluation across different domains.
• Evaluation is essential to identify strengths and weaknesses of these techniques.

• To study this problem in a general context that is applicable to a range of 
domains (such as aircraft safety, intrusion detection, etc.) we can define 
sequential anomaly detection as follows
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Given a set of N sequences S, and a query sequences Sq, 
find an anomaly score for Sq with respect to S, where we 

assume that subsequences in S are (mostly) normal.



Collective anomalies
Sequential AD: kernel-based techniques

•A way to tackle this is via kernel-based methods, 
which define a similarity kernel based on some 
similarity measure, such as the Manhattan dis-
tance or the longest common subsequence (LCS).

•Based on this measure, we can then apply any 
traditional proximity-based AD technique:
• Clustering analysis to cluster normal sequences into a 

fixed number of clusters. The anomaly score of a test 
sequence is then the inverse of its similarity measure with 
respect to the closest cluster medoid. 

• Nearest-neighbour analysis, where the anomaly score  
of a test sequence is the inverse of its similarity to the kth 
nearest neighbour in the normal sequence dataset.
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Collective anomalies
Sequential AD: window-based techniques

• Another way to identify anomalies is via window-based tools, where we 
aim to extract finite-length sliding windows from a given test sequence.

• For each sliding window, we        
determine its frequency in the       
training dataset. The frequency        
of occurrence then acts as an       
inverse anomaly score.
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We then average the per-window anomaly score to obtain 
an overall anomaly score for the entire test sequence.



Collective anomalies
Sequential AD: window-based techniques

• Another way to identify anomalies is via window-based tools, where we 
aim to extract finite-length sliding windows from a given test sequence.

• For each sliding window, we        
determine its frequency in the       
training dataset. The frequency        
of occurrence then acts as an       
inverse anomaly score.
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We then average the per-window anomaly score to obtain 
an overall anomaly score for the entire test sequence.



• In the remainder of this class, we will look at several more of the methods 
of anomaly detection (following Chandola et al. (2008) – Anomaly Detec-
tion: A Survey; see reading materials):
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Online anomaly detection
The idea

• When addressing problems like video 
feeds, network traffic, aircraft safety or 
credit-card transactions, data often 
arrives in streaming mode. So, anoma-
lies need to be detected in real time.
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CHALLENGES

• When do we reject an outlier candidate?

• As ”normal” behaviour changes, when 
do we update a model (periodically at 
fixed times, incremental after every data 
record, reactively only when needed)?



• In the remainder of this class, we will look at several more of the methods 
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Distributed anomaly detection
The idea

•Data in many anomaly detection applications comes from different sources 
(e.g., users in a network). Outliers that occur across multiple locations simul-
taneously may be undetected by analysing only data from a single location.
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•Detecting anomalies in such complex systems 
requires the integration of information about 
detected anomalies from single locations to 
detect anomalies at the global level.

There is a need for high-performance and 
distributed algorithms for correlation 

and integration of anomalies.



Distributed anomaly detection
Different approaches
• Simple data exchange approaches
• Merge data at single locations and then exchange these data between 

distributed locations.

•Distributed nearest-neighbour approaches
• Exchange one data record per distance computation to other centres.
• Computationally inefficient, but e.g., used for privacy-preserving AD 

algorithms.

•Methods based on exchange of models
• Develop statistical or data-mining models for normal/anomalous behaviour.
• Share these models across multiple locations.
• Combine them at each location to detect global anomalies

53



Distributed anomaly detection
Centralised vs. distributed architectures
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Summary
• Anomaly detection can detect critical information in data.

• Anomaly detection applies to various domains. Anomalies and outliers 
are often the piece of information of greatest interest.

• The nature of the anomaly detection problem is dependent on the 
application domain. We, therefore, need different techniques to solve a 
particular problem formulation.

• We introduced statistical-based approaches and several others for 
point anomaly detection. We then focused on contextual and collective 
anomaly detection and highlighted a few special approaches.
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