
Generative Adversarial Networks (GANs)
Advanced Research Topics – 7PAM2016

Dr Vanessa Graber (based on slides by Dr William Alston)

• Understand context for GANs, specifically supervised vs. unsu-
pervised learning and discriminative vs. generative modelling.

• Understand the GAN architecture for automatically training a
generative model by treating the unsupervised problem as
supervised and using both a generator and a discriminator.

• Have seen research common examples of GAN architectures.

• Be able to implement a simple GAN in Python.

Learning outcomes
After this lectures and the next tutorial, you will:

2

Reading

Probabilistic Machine Learning
Advanced Topics – Chapter 26

Kevin P. Murphy 2022

https://herts.instructure.com/course
s/112318/files/7674016/download?d
ownload_frd=1

3

https://herts.instructure.com/courses/112318/files/7674016/download?download_frd=1
https://herts.instructure.com/courses/112318/files/7674016/download?download_frd=1
https://herts.instructure.com/courses/112318/files/7674016/download?download_frd=1

• Goodfellow et al. Generative Adversarial Nets. NIPS (2014)
• Denton, et al. Deep Generative Image Models using a Laplacian

Pyramid of Adversarial Networks. NIPS (2015)
• Radford et al. Unsupervised Representation Learning with Deep

Convolutional Generative Adversarial Networks. ICLR (2016)
• Miyato et al. Spectral Normalization for Generative Adversarial

Networks. ICLR (2018)
• Brock et al. Large Scale GAN Training for High Fidelity Natural Image

Synthesis. ICLR (2019)
• Karras et al. A Style-Based Generator Architecture for Generative

Adversarial Networks. CVPR (2019)

Further reading
Some key references in the field

4

Introduction and key concepts

How do GANs work?

Types of GANs and their applications

Summary

Introduction and key concepts

How do GANs work?

Types of GANs and their applications

Summary

• A generative adversarial
network (GAN) is an unsu-
pervised deep learning
model using, e.g., CNNs
to generate new samples
that are indistinguishable
from a set of training data.

• There is no easy way to
assess how likely it is that
a data point was gene-
rated from the model.

What GANs can do
An example: generate a ”living portrait” (Zakharov et al. 2019)

7

GANs have a lot of applications but also
pose serious risks (deepfakes, etc.)!!

• Most of the neural network appli-
cations you have come across so
far were likely implemented using
discriminative models, which aim
• to draw boundaries in data spaces.
• to predict the labels of the data.

Discrimination vs. generation
The concepts

8

• GANs, on the other hand, are part
of a different class of models known
as generative models. These aim
• to learn the true (unknown) underlying distribution from the training data.
• to understand how the data was generated.

• These models are used for most supervised classi-
fication or regression problems. E.g., you might
want to construct a classifier that recognises hand-
written digits. For that, we would use a dataset of
labelled images (e.g., MNIST).

• From this, the model learns the boundaries between
the classes. These boundaries are then used to dis-
criminate an input and predict its class.

Discriminative models
The set-up

9

Mathematically speaking: the model learns the conditional
probability P(y|x) of the output y given the input x.

• To train our classifier, we would use an algorithm to adjust the
model’s parameters. The goal is to minimise a loss function so
that we learn the conditional probability distribution P(y|x).

• Once trained, we can use the discriminative model to classify a
new digit by estimating the most probably digit:

Discriminative models
Training

10

• Generative models, like GANs, are trained to describe how a
dataset is generated in terms of a probabilistic model. By
sampling from a generative model, we then generate new data.

• While discriminative models are used for supervised learning,
generative models are often used with unlabelled datasets and
can be seen as a form of unsupervised learning.

Generative models
The set-up

11

Explicit approach Implicit approach

Generative models
Training

12

• For a dataset of hand-written digits, we would train our generative
model to generate new digits. During training, we would use an
algorithm to adjust the model’s parameters to minimise a loss
function and learn the probability distribution of the training set.

• Once trained, we can then use the generative model to
create new samples as illustrated below:

Generative models
We can distinguish

13

EXPLICIT LIKELIHOOD MODELS
with access to underlying probability

density distribution:

• Maximum likelihood methods
• PPCA / factor analysis / mixture models

• PixelCNN / PixelRNN

• Wavenet

• Autoregressive language models

• Approximate maximum likelihood
methods
• Boltzmann machines

• Variational autoencoders

IMPLICIT MODELS
without access to likelihoods:

• Generative adversarial
networks

• Moment matching machines

Image generation with GANs
Some examples from key references

14

Goodfellow et al. (2014) Denton et al. (2015) Radford et al. (2016)

Miyato et al. (2018) Brock et al. (2019) Karras et al. (2019)

What can you see?

GANs
The key idea

15

• These networks provide a
path to sophisticated domain-
specific data augmentation
and a solution to problems
that require a generative
approach, such as image-to-
image translation.

GANs learn an implicit model
(no access to the likelihood)
through a two-player game.

GANs
Generator vs. discriminator

16

• The two players interacting in a GAN are the following:

DISCRIMINATOR

Learns to distinguish between
real and generated (fake) data

GENERATOR

Learns to generate data to
“fool” the discriminator.

vs. z

Generator
The set-up

17

• The generator is a deep neural network that learns to generate data
from noise. Initially, the output will look nothing like the desired output
(e.g., bird image). This makes it easy to identify the output as ”fake”.

z

Latent (”noise”)
vector: z ~ P(z)

Deep NN
generator: G

G(z)G

Generated
data: G(z)

Discriminator
The set-up

18

• The discriminator has access to real data and knows what the true
output should look like. It then tries to distinguish these true data
samples from those created by the generator.

real or
genera-

ted

Real data:
x ~ P’(x)

Deep NN
discriminator: D

G(z)

D

Predicted label
x

Generated
data: G(z)

Discriminator Teacher
Different naming

19

• To use less adversarial (negative) language, the discriminator is
now also referred to as the teacher. The generator makes the
teacher “happy” by making the generated data look real.

The teacher tells the generator how to
improve and produce more realistic

output!! Due to the iterative interplay
between both components, GANs learn to
produce more and more realistic output.

Introduction and key concepts

How do GANs work?

Types of GANs and their applications

Summary

GAN architecture
A toy example I

21

• The generator (G) estimates the probability distribution of the real
samples to provide generated samples resembling real data. The
discriminator (D), in turn, is trained to estimate the probability that a
given sample came from the real data rather than being generated.

• The two compete against each other: G tries to get better at fooling
D, while D tries to get better at identifying samples generated by G.

Let’s consider a toy example with a
dataset composed of two-

dimensional samples (x1, x2) with x1
in the interval from 0 to 2𝜋 and x2 =
sin(x1), as illustrated in the figure.

GAN architecture
A toy example II

22

• The purpose of a GAN is
now to generate pairs "x =
("x!, "x") from random data
z = (z!, z"), that resemble
the samples of the initial
dataset x = (x!, x").

• The general structure of
this architecture is illus-
trated in the sketch on the
right-hand side.

GAN architecture
Generator neural network

23

The structure of the neural net-
work G is arbitrary. This allows us to
use multilayer perceptrons (MLPs),

convolutional neural network
(CNNs), or any other structure.

The only requirement is that the
dimensions of the input and output
match the dimensions of the latent

space and the real data, respectively.

GAN architecture
Discriminator neural network

24

• The discriminator D is fed either real samples
from the training dataset or generated samples
provided by the generator G. Its role is to
estimate the probability that the input is real.

• The training is performed such that D
outputs 1 when it sees a real sample
and 0 when it is fed a generated sample.

As for G, we can choose an arbitrary network
structure for D as long as it respects the
necessary input and output dimensions.

In our example, the input is
two-dimensional, while the

output of the binary
discriminator is typically a
scalar ranging from 0 to 1.

GAN optimisation
Min-max game

25

• Although the dataset containing the real data
is not labelled, the training processes for D
and G are performed in a supervised way.

• At certain stages in the training, the parame-
ters of D and G are updated. For the original
GAN proposal, the parameters of D are up-
dated k times, while those of G are updated
only once per training step (see below).

The GAN training process consists of a two-player min-max game in which D is
trained to minimise the discrimination error between real and generated

samples, while G is trained to maximise the probability of D making a mistake.

GAN optimisation
The mathematics

26

• What we just described in a contextual way, we can mathematically
express as follows, where V denotes the value function of our optimi-
sation problem:

Log-probability that D
correctly predicts that real

data samples x are real

Log-probability that D correctly
predicts that generated data
samples G(z) are generated

GAN optimisation
The mathematics

27

• What we just described in a contextual way, we can mathematically
express as follows, where V denotes the value function of our optimi-
sation problem:

Log-probability that D
correctly predicts that real

data samples x are real

Log-probability that D correctly
predicts that generated data
samples G(z) are generated

Discriminator’s (D) goal: maximise prediction accuracy

Generator’s (G) goal: minimise prediction accuracy by fooling
D into believing its outputs G(z) are real as often as possible.

GAN optimisation
The training process I

28

• To train D, at each iteration, we label some real samples taken from
the training data as 1 and some generated samples from G as 0.

This way, we can
use a conventional
supervised training

framework to update
the parameters of D
to minimise our loss

function for each
batch of training data.

GAN optimisation
The training process II

29

• After the parameters of the discriminator D have been updated, we
then train the generator G to produce better generated samples.

Note that the
output of G is

connected to D,
whose para-

meters are kept
frozen during the

updating of G.

GAN optimisation
The original algorithm by Goodfellow et al. (2014)

30

GAN optimisation
The output

31

• During training, as we update the parame-
ters of the discriminator D and the genera-
tor G, we expect that generated samples
created by G will more and more closely
resemble real data. At the same time, D will
have more and more trouble distinguishing
between real and generated data.

Once the generator G does a good enough job
to fool the discriminator D, we expect the

output probability to be close to 1.

GAN optimisation
The output

32

• During training, as we update the parame-
ters of the discriminator D and the genera-
tor G, we expect that generated samples
created by G will more and more closely
resemble real data. At the same time, D will
have more and more trouble distinguishing
between real and generated data.

Once the generator G does a good enough job
to fool the discriminator D, we expect the

output probability to be close to 1.

In the tutorial, we will see how to

implement a basic GAN architecture.

Divergence minimisation
Kullback-Leibler (KL) divergence

33

• The general goal of GANs to optimise the same loss
function “in two different direction” has a connection
to the game theory literature (see Nash equilibria,
GT strategies or fictitious play).

• We can also connect the objective of generative models to minimising a
divergence or distance. The most commonly used statistical distance
measure is the Kullback-Leibler (KL) divergence (inspired by entropy):

The KL divergence DKL measures
how two probability distributions,

P and Q, differ from each other.

DKL(P||𝑄) = 	∫−∞
∞ p x log p x

q x
dx,

with probability densities p(x), q(x).

Divergence minimisation
KL divergence example

34

• To illustrate how the KL divergence
operates, let’s look at a ”target”
distribution P shown in black and
two “test” distributions Q in blue:

DKL(P||𝑄) = 	0
−∞

∞
p x log

p x
q x dx

The divergence is zero when p(x) = 0,
and large when p(x) and q(x) overlap.

The shaded blue
region represents the

integrand of the KL
integral. The diver-
gence is smaller in
the second case.

Divergence minimisation
Connection to maximum likelihood

35

• Minimising the KL divergence implies:

• We can also show that minimising the KL divergence for two distribu-
tions P(x|𝜃∗) and P(x|𝜃) is equivalent to maximum likelihood estimation
for P(x|𝜃) (i.e., finding the optimal parameters 𝜃 that best describe the
data x):

For DKL(P||𝑄) = 0, we have P = Q.

θ$% = argmin& D$%[P x θ∗ ||P(x|θ)] = argmax& P x θ = θ'%(

Divergence minimisation
Jensen Shannon (JS) divergence

36

• Note that the KL divergence is not symmetric and,
hence, not a true measure of distance, because

• We can, however, define an alternative divergence that satisfies the
symmetry condition and always has a finite value, the so-called Jensen
Shannon (JS) divergence, which is defined as

DKL(P||𝑄) ≠ D56(Q||P).

DKL(P||𝑄) = 	0
−∞

∞
p x log

p x
q x

dx

DJS(P||Q) =
1
2
DKL(𝑃||𝑀) +

1
2
DKL(𝑄||M) where 𝑀 = 1

2
(𝑃 + 𝑄)

Divergence minimisation
Connection to GANs

37

• Let us return to our optimisation problem for GANs:

• If the discriminator D(x) in our GAN is optimal, it is possible to show
that the generator minimises the JS divergence between the real
and the generated data distributions (see Goodfellow et al, 2014).

However, in practice D(x) is typically not optimal because
(i) our computational resources are limited, and (ii) we only
have access to samples and not the true data distribution.

Divergence minimisation
Issue with the KL and JS divergence

38

• Let us consider the following case, where we have two distributions
p(x)* and p(x) that do not overlap along x, i.e., they have no
overlapping support. In this case, we find for our two divergences:

• If the distributions of our true and gene-
rated data do not overlap, our network
does not “receive a signal” or learn.

DKL(P∗||P) = ∞	 and DJS(P∗||P) = log 2

DKL(P||𝑄) = 	0
−∞

∞
p x log

p x
q x dx

Divergence minimisation
Issue with the KL and JS divergence

39

• Let us consider the following case, where we have two distributions
p(x)* and p(x) that do not overlap along x, i.e., they have no
overlapping support. In this case, we find for our two divergences:

• If the distributions of our true and gene-
rated data do not overlap, our network
does not “receive a signal” or learn.

• Moving p “closer” to the true p* does not
change the values of our divergences.

DKL(P∗||P) = ∞	 and DJS(P∗||P) = log 2

DKL(P||𝑄) = 	0
−∞

∞
p x log

p x
q x dx

Mode collapse
Another issue with GANs

40

• Typically, we want our GAN to produce a wide variety of outputs. However, it
is possible that the generator finds a particularly “good” output that is fooling
the discriminator very well. This can happen when the discriminator is
trapped in a local minimum (e.g., difficulty to distinguish digits 1 and 9).
• The generator then starts to produce the same output (the same mode) over

and over. The discriminator’s best strategy would be to always label that
output as “fake” to encourage the generator to move away from this output,
but the local minimum prevents that from happening.

• As a result, the generator
keeps producing the same
output and does not learn
to represent the full data
distribution.

Mode collapse
Two more examples

41

• On the left, the GAN fails to produce digits with a single colour. Instead,
all digits are generated with a mixture of the individual colours. On the
right, we see that the faces seem to be generated from three modes and
are barely recognisable as faces. See Fedus et al. (2018) for details.

Distance measures
Other alternatives I

42

• To help with these issues in the original GAN for-
mulation, we can use different divergences.

• A method that respects the geometry of the underlying space and
captures the distance of two probability distributions whose support
does not intersect is the so-called Wasserstein distance

• In a Wasserstein GAN, we optimise (Arjovsky et al, 2017):

D<=(P||Q) = sup
| > |!?@

𝔼A~C A f x − 𝔼D~E D f y

min
F

max
| G |!?@

𝔼A~C"#$# A D x − 𝔼H~C% H D(G z)

It has been empiri-
cally shown that the

Wasserstein GAN
generally avoids
mode collapse.

Distance measures
Other alternatives II

43

• For completeness, let us highlight two more alternatives:
• MMD GANs based on the Maximum Mean Discrepancy (MMD), which

encodes the difference between feature means:

• f-GANs based on f-divergences (generalisations of the KL
divergence), which again encode the differences between
two probability distributions:

DIIG(P||Q) = sup
| > |ℋ?@

𝔼A~C A f x − 𝔼D~E D f y

D>(P||Q) = 6
JK

K
q x f

p x
q x

dx

Key idea: we
can create

GAN training
criteria based

on various
divergences

and distances.

GANs
Divergence minimisers? I

44

• Remember that for implicit models,
we do not have access to the pro-
bability distribution of our real data,
pdata(x). We only have samples. So,
we cannot explicitly calculate our
earlier divergence measures.

• Instead, we can use a trick and replace the intractable divergen-
ces by lower bounds (so-called variational lower bounds; see
Nowozin et al. f-GAN: Training Generative Neural Samplers using
Variational Divergence Minimization (2016) for details) that only
depend on our samples, not the underlying distributions.

D>(P||Q) = 6
JK

K
q x f

p x
q x

dx

GANs
Divergence minimisers? II

45

• The key role of the discriminator is then to learn how to distinguish bet-
ween samples from two distributions (not the distributions themselves).

• GANs do not do divergence minimi-
sation in practice, but D learns a
“distance” (i.e., boundary) between
the data and model distributions.
These distances then provide useful
gradients to update the model.

• Another advantage is that GANs
learn smooth distances and do not
fail even in those cases, where the
underlying divergences would.

GANs vs. divergence minimisation
Key differences

46

GANs
• PROs

• Easy access to generated samples

• Smooth learned loss function

• Empirically the underlying loss matters
less than the NN architecture, the
training regime and the data used

• CONs
• Dynamics are difficult to analyse

• Optimal convergence cannot be
guaranteed

DIVERGENCE
MINIMISATION

• PROs
• Optimal convergence is

guaranteed

• Analysis of loss
properties is straight
forward

• CONs
• Access to good samples

is very difficult

Evaluating GANs
The main issue

47

• Now that we know how GANs work in practice, we can ask ourselves:

• We could focus, e.g., on the following metrics:
• How good is the quality of the produced samples?
• How good is our GAN at generalising to different tasks?
• Is our network learning meaningful patterns (representation learning)?

When can we say that a GAN is performing well?

No single evaluation metric captures all desired properties. In practice,
we have to evaluate the GAN performance based on our end goal (e.g.,
classification accuracy in semi-supervised settings, human evaluation).

Evaluating GANs
Metrics: Inception Score (IS)

48

• A key problem when evaluating GANs is that for these implicit models, we
do not have access to the likelihoods (very expensive to approximate).

• To evaluate the GAN output, we can run the generated images through
the Inception network that was pretrained on the ImageNet dataset. We
then compare the distribution of labels obtained
from real data with the distribution of labels from
our samples using the KL divergence.

+ measures the sample quality and diversity
+ correlates with human evaluation

- does not measure differences beyond labels
- depends on quality of pretrained classifier

• A key problem when evaluating GANs is that for these implicit models, we
do not have access to the likelihoods (very expensive to approximate).

• To evaluate the GAN output, we can run the generated images through
the Inception network that was pretrained on the ImageNet dataset. We
then compare the distribution of labels obtained
from real data with the distribution of labels from
our samples using the KL divergence.

Evaluating GANs
Metrics: Inception Score (IS)

49

+ measures the sample quality and diversity
+ correlates with human evaluation

- does not measure differences beyond labels
- depends on quality of pretrained classifier

If our GAN performs well, the distribution of

generated labels should be different. This

corresponds to a larger KL divergence: A large

Inception Score reflects good GAN performance!

Evaluating GANs
Metrics: Fréchet Inception Distance (FID)

50

• This approach also uses the pretrained Inception network. Instead of
focusing on labels, we however run our samples and real data through
the classifier to compare distributions of features in the final pooling
layer. Both are compared using the so-called Fréchet distance.

+ measures the sample quality and diversity
+ correlates with human evaluation
+ measures feature level statistics

(not just classes)
- depends on quality of pretrained classifier

- biased for a small number of samples

A small Fréchet
Inception Distance
reflects good GAN

performance!

Evaluating GANs
Metrics: nearest neighbour classifier

51

• We can use a nearest
neighbour classifier to
compare a generated
sample to every single
training image and
predict the closest
training images (e.g.,
by comparing absolute
pixel value difference).

• This gives a qualitative
measure if overfitting
takes place or not.

Generated
(test)

sample

Introduction and key concepts

How do GANs work?

Types of GANs and their applications

Summary

Original architecture
Goodfellow et al. (2014)

53

• The paper focused on simple
data structures (images with
32x32 resolution) and simple
models. For (a) (MNIST dataset),
(b) (Toronto Face Database; TFD)
and (c) (CIFAR-10 database) they
applied a simple MLP for the
discriminator and generator.

• For (d) (CIFAR-10), they used a
convolutional discriminator and
deconvolutional generator.

• For the training process, images
were flattened to vectors; i.e., the
spatial structure was ignored.

Unconditional vs. conditional GANs
The difference

54

• When introducing our generator, we focused on the scenario that the
generator produces data samples from random noise. This allows
us to capture the full spread of the data distribution. However, in this
case, we do not have control over the kind of sample we produce.

• In conditional GANs, we
can specify the kind of
sample we want to output
(i.e., bird vs. cat) by provi-
ding additional information
(labels) to our generator.

Unconditional scenario

Class-conditional GAN
Modification to our original flow chart

55

real or
genera-

ted y

Real data:
x ~ P’(x)

Deep NN
discriminator: D

G(y, z)

D

Predicted labelx

Generated
data: G(y, z)

y

Conditioning
label: y

Conditional GANs
Mirza & Osindero (2014)

56

• Mirza & Osindero generalised the original Goodfellow et al. algorithm
to include additional conditional information, which was provided to
the generator and the discriminator during training.

Laplacian GANs (LAPGANs) I
Denton et al. (2015)

57

• The authors intro-
duced a generative
parametric model
that produces high-
quality samples of
images. To gene-
rate images from
coarse to fine, they
use a cascade of
CNNs within a
pyramid structure.

Laplacian GANs (LAPGANs) I
Denton et al. (2015)

58

• The authors intro-
duced a generative
parametric model
that produces high-
quality samples of
images. To gene-
rate images from
coarse to fine, they
use a cascade of
CNNs within a
pyramid structure.

Laplacian GANs (LAPGANs) II
Denton et al. (2015)

59

• At each pyramid level, generators are trained independently to model
the corresponding high-frequency structure. Once trained, the gene-
rative models are used to reconstruct a final generated output:

Laplacian GANs (LAPGANs) II
Denton et al. (2015)

60

• At each pyramid level, generators are trained independently to model
the corresponding high-frequency structure. Once trained, the gene-
rative models are used to reconstruct a final generated output:

This method performs
well at higher

resolutions. Human
evaluation showed that

roughly 40% of
generated images with

the LAPGAN were
identified as real.

Deep Convolutional GANs (DCGANs) I
Radford et al. (2016)

61

• The authors introduce a GAN approach that uses deep CNNs for the
generator and discriminator. They imposed certain architecture
guidelines to stabilise the otherwise very difficult training process:
• Batch normalisation in both G and D.
• Removal of fully connected hidden layers.
• Primarily ReLU activation for the generator.
• LeakyReLU activation for the discriminator.

Deep Convolutional GANs (DCGANs) II
Radford et al. (2016)

62

• This approach also enabled the
definition of a ”turning vector” for
faces looking from left to right. By
interpolating along this axis, the
GAN samples was able to reliably
transform their pose.

• The DCGAN generator’s
noise/latent space also
seems to have meaningful
understanding of semantics.

Spectral normalisation (SN) GANs
Miyato et al. (2018)

63

• One of the key difficulties when using GANs is to stabilise the training
of the discriminator. To overcome this issue, Miyato et al. introduced
a new normalisation for the network weights based on the weights’
spectral properties to restrict the choices of functions that can be
used for the discriminator. This led to more diverse samples.

Self-Attention (SAGANs)
Zhang et al. (2019)

64

• Traditional convolutional GANs generated high-resolution details in images
as a function of spatially local points only. To improve on this, SAGANs
allow feature generation based on global feature locations. This is imple-
mented via self-attention (updates are performed based on weighted sums
of the features across all positions).
• Moreover, the discriminator checks that detailed features in distant portions

of the image are consistent with each other.

BigGAN I
Brock et al. (2019)

65

• Training dataset size (1.2 million images)
• Resolution in images (128, 256, 512)

• Despite the advances discussed so far, by the beginning of 2019, it was
still difficult to generate high-resolution samples with large diversity for
complex datasets such as ImageNet. To solve this, Brock et al. trained
class-conditional GANs for the first time at large scale. They increased
• Batch size (2048)
• Model parameters (>100 million)

BigGAN II
Brock et al. (2019)

66

• One of the key things the papers finds, is that because of the large sample
size, they can use a so-called “truncation trick”, which refers to varying the
scale of the noise, z, that is fed to the generator.

• For smaller (truncated) noise, they increase the fidelity of the images and
create prototypical examples for each class. Larger noise on the other
hand produces more variety and generates the full class distribution.

G(y, z)

More truncation
(smaller noise)

Less truncation
(larger noise)

BigGAN III
Brock et al. (2019)

67

• In addition, the paper presents a large empirical study to build a reliable (aka
stable) prescription for large-scale GAN training focusing on, e.g., different
losses, spectral normalisation, self-attention, and other tricks.

• However, there are new cases where BigGAN fails: (i) some classes are easier to
generate (e.g., dogs are common, and cliffs have a single texture) than others,
which are more dynamic or structured. (ii) images from one class can contain
properties of another (class leakage).

GANs for audio synthesis
A few examples

68

WaveGAN reproduces spectral
characteristics from various audio signals

with high-temporal resolution (Donahue et
al. Adversarial Audio Synthesis. 2019)

GAN-TTS for Text-to-Speech combines a
feedforward generator with an ensemble

of Random Window Discriminators
(Binkowksi et al. High fidelity speech

synthesis with adversarial networks. 2019)

GANs for audio synthesis
A few examples

69

WaveGAN reproduces spectral
characteristics from various audio signals

with high-temporal resolution (Donahue et
al. Adversarial Audio Synthesis. 2019)

GAN-TTS for Text-to-Speech combines a
feedforward generator with an ensemble

of Random Window Discriminators
(Binkowksi et al. High fidelity speech

synthesis with adversarial networks. 2019)
We now also have more complex GAN

architectures that are used for video synthesis

and prediction (e.g. DVD-GAN from Clark et al.

(2019) or TriVD-GAN from Luc et al. (2020)).

GANs are everywhere
A few examples

70

Introduction and key concepts

How do GANs work?

Types of GANs and their applications

Summary

Summary I

72

• GANs are a type of generative model that create new samples by
framing the problem as a supervised learning problem with two
competing components (two-player game).

• The generator creates new samples that the discriminator (teacher)
tries to identify as “fake”. By optimising both at the same time, the
generated output gets better and better. The discriminator aims to
maximise the prediction accuracy, while the generator minimises it.

• As a result, GANs learn to approximate the probability distribution
of the real data. However, GANs are an implicit framework, where we
do not have direct access to the underlying likelihoods.

Summary II

73

• Different GAN training criteria have been developed. These are
inspired by certain divergence and distance measures to compare
the similarity between (samples from) two probability distributions.
However, GANs do not perform divergence minimisation in practice.

• Evaluating the performance of GANs is difficult as we do not have
access to the likelihoods. Instead, different evaluation metrics are
used (e.g., Inception Scores, Fréchet Inception Distance).

• Training GANs is challenging but the field is rapidly evolving, and a
lot of progress has been made since 2014. GANs are now used for
many tasks like image-to-image translation and generating realistic
pictures of objects, people, etc. However, the difficulty in identifying
outputs as fake also poses serious risks that need to be addressed.

