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• Understand context for GANs, specifically supervised vs. unsu- 
pervised learning and discriminative vs. generative modelling.

• Understand the GAN architecture for automatically training a 
generative model by treating the unsupervised problem as 
supervised and using both a generator and a discriminator.

• Have seen research common examples of GAN architectures.

• Be able to implement a simple GAN in Python.

Learning outcomes
After this lectures and the next tutorial, you will:
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Reading

Probabilistic Machine Learning 
Advanced Topics – Chapter 26

Kevin P. Murphy 2022

https://herts.instructure.com/course
s/112318/files/7674016/download?d
ownload_frd=1
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• Goodfellow et al. Generative Adversarial Nets. NIPS (2014)
• Denton, et al. Deep Generative Image Models using a Laplacian 

Pyramid of Adversarial Networks. NIPS (2015)
• Radford et al. Unsupervised Representation Learning with Deep 

Convolutional Generative Adversarial Networks. ICLR (2016)
• Miyato et al. Spectral Normalization for Generative Adversarial 

Networks. ICLR (2018)
• Brock et al. Large Scale GAN Training for High Fidelity Natural Image 

Synthesis. ICLR (2019)
• Karras et al. A Style-Based Generator Architecture for Generative 

Adversarial Networks. CVPR (2019) 

Further reading
Some key references in the field
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• A generative adversarial 
network (GAN) is an unsu-
pervised deep learning 
model using, e.g., CNNs 
to generate new samples 
that are indistinguishable 
from a set of training data. 

• There is no easy way to 
assess how likely it is that 
a data point was gene-
rated from the model. 

What GANs can do
An example: generate a ”living portrait” (Zakharov et al. 2019)
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GANs have a lot of applications but also 
pose serious risks (deepfakes, etc.)!!



• Most of the neural network appli-
cations you have come across so 
far were likely implemented using 
discriminative models, which aim
• to draw boundaries in data spaces.
• to predict the labels of the data.

Discrimination vs. generation
The concepts
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• GANs, on the other hand, are part          
of a different class of models known                  
as generative models. These aim
• to learn the true (unknown) underlying distribution from the training data.
• to understand how the data was generated. 



• These models are used for most supervised classi-
fication or regression problems. E.g., you might 
want to construct a classifier that recognises hand-
written digits. For that, we would use a dataset of 
labelled images (e.g., MNIST).

• From this, the model learns the boundaries between 
the classes. These boundaries are then used to dis-
criminate an input and predict its class.

Discriminative models
The set-up
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Mathematically speaking: the model learns the conditional 
probability P(y|x) of the output y given the input x.



• To train our classifier, we would use an algorithm to adjust the 
model’s parameters. The goal is to minimise a loss function so 
that we learn the conditional probability distribution P(y|x).

• Once trained, we can use the discriminative model to classify a 
new digit by estimating the most probably digit:

Discriminative models
Training
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• Generative models, like GANs, are trained to describe how a 
dataset is generated in terms of a probabilistic model. By 
sampling from a generative model, we then generate new data.

• While discriminative models are used for supervised learning, 
generative models are often used with unlabelled datasets and 
can be seen as a form of unsupervised learning.

Generative models
The set-up
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Explicit approach Implicit approach



Generative models
Training
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• For a dataset of hand-written digits, we would train our generative 
model to generate new digits. During training, we would use an 
algorithm to adjust the model’s parameters to minimise a loss 
function and learn the probability distribution of the training set.

• Once trained, we can then use the generative model to   
create new samples as illustrated below:



Generative models
We can distinguish
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EXPLICIT LIKELIHOOD MODELS
with access to underlying probability 

density distribution:

• Maximum likelihood methods
• PPCA / factor analysis / mixture models

• PixelCNN / PixelRNN

• Wavenet

• Autoregressive language models

• Approximate maximum likelihood 
methods
• Boltzmann machines

• Variational autoencoders

IMPLICIT MODELS 
without access to likelihoods:

• Generative adversarial 
networks

• Moment matching machines



Image generation with GANs
Some examples from key references
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Goodfellow et al. (2014) Denton et al. (2015) Radford et al. (2016)

Miyato et al. (2018) Brock et al. (2019) Karras et al. (2019)

What can you see?



GANs
The key idea
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• These networks provide a 
path to sophisticated domain-
specific data augmentation 
and a solution to problems 
that require a generative 
approach, such as image-to-
image translation.

GANs learn an implicit model 
(no access to the likelihood) 
through a two-player game.



GANs
Generator vs. discriminator
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• The two players interacting in a GAN are the following:

DISCRIMINATOR

Learns to distinguish between 
real and generated (fake) data

GENERATOR

Learns to generate data to 
“fool” the discriminator.

vs. z



Generator
The set-up
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• The generator is a deep neural network that learns to generate data 
from noise. Initially, the output will look nothing like the desired output 
(e.g., bird image). This makes it easy to identify the output as ”fake”.

z

Latent (”noise”) 
vector: z ~ P(z)

Deep NN 
generator: G

G(z)G

Generated 
data: G(z)



Discriminator
The set-up
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• The discriminator has access to real data and knows what the true 
output should look like. It then tries to distinguish these true data 
samples from those created by the generator. 

real or 
genera-

ted

Real data: 
x ~ P’(x)

Deep NN 
discriminator: D

G(z)

D

Predicted label
x

Generated 
data: G(z)



Discriminator Teacher
Different naming
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• To use less adversarial (negative) language, the discriminator is 
now also referred to as the teacher. The generator makes the 
teacher “happy” by making the generated data look real.

The teacher tells the generator how to 
improve and produce more realistic 

output!! Due to the iterative interplay 
between both components, GANs learn to 
produce more and more realistic output.
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GAN architecture
A toy example I
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• The generator (G) estimates the probability distribution of the real 
samples to provide generated samples resembling real data. The 
discriminator (D), in turn, is trained to estimate the probability that a 
given sample came from the real data rather than being generated.

• The two compete against each other: G tries to get better at fooling 
D, while D tries to get better at identifying samples generated by G.

Let’s consider a toy example with a 
dataset composed of two-

dimensional samples (x1, x2) with x1 
in the interval from 0 to 2𝜋 and x2 = 
sin(x1), as illustrated in the figure.



GAN architecture
A toy example II
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• The purpose of a GAN is 
now to generate pairs "x =
("x!, "x") from random data 
z = (z!, z"), that resemble 
the samples of the initial 
dataset x = (x!, x"). 

• The general structure of 
this architecture is illus-
trated in the sketch on the 
right-hand side.



GAN architecture
Generator neural network
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The structure of the neural net-
work G is arbitrary. This allows us to 
use multilayer perceptrons (MLPs), 

convolutional neural network
(CNNs), or any other structure.

The only requirement is that the 
dimensions of the input and output 
match the dimensions of the latent 

space and the real data, respectively.



GAN architecture
Discriminator neural network
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• The discriminator D is fed either real samples 
from the training dataset or generated samples 
provided by the generator G. Its role is to 
estimate the probability that the input is real.

• The training is performed such that D   
outputs 1 when it sees a real sample   
and 0 when it is fed a generated sample. 

As for G, we can choose an arbitrary network 
structure for D as long as it respects the 
necessary input and output dimensions.

In our example, the input is 
two-dimensional, while the 

output of the binary 
discriminator is typically a 
scalar ranging from 0 to 1.



GAN optimisation
Min-max game
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• Although the dataset containing the real data 
is not labelled, the training processes for D 
and G are performed in a supervised way. 

• At certain stages in the training, the parame-
ters of D and G are updated. For the original 
GAN proposal, the parameters of D are up-
dated k times, while those of G are updated 
only once per training step (see below).

The GAN training process consists of a two-player min-max game in which D is 
trained to minimise the discrimination error between real and generated 

samples, while G is trained to maximise the probability of D making a mistake.



GAN optimisation
The mathematics
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• What we just described in a contextual way, we can mathematically 
express as follows, where V denotes the value function of our optimi-
sation problem:

Log-probability that D 
correctly predicts that real 

data samples x are real

Log-probability that D correctly 
predicts that generated data 
samples G(z) are generated



GAN optimisation
The mathematics
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• What we just described in a contextual way, we can mathematically 
express as follows, where V denotes the value function of our optimi-
sation problem:

Log-probability that D 
correctly predicts that real 

data samples x are real

Log-probability that D correctly 
predicts that generated data 
samples G(z) are generated

Discriminator’s (D) goal: maximise prediction accuracy

Generator’s (G) goal: minimise prediction accuracy by fooling 
D into believing its outputs G(z) are real as often as possible.



GAN optimisation
The training process I
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• To train D, at each iteration, we label some real samples taken from 
the training data as 1 and some generated samples from G as 0.

This way, we can 
use a conventional 
supervised training 

framework to update 
the parameters of D 
to minimise our loss 

function for each 
batch of training data.



GAN optimisation
The training process II
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• After the parameters of the discriminator D have been updated, we 
then train the generator G to produce better generated samples.

Note that the 
output of G is 

connected to D, 
whose para-

meters are kept 
frozen during the 

updating of G.



GAN optimisation
The original algorithm by Goodfellow et al. (2014)
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GAN optimisation
The output
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• During training, as we update the parame-
ters of the discriminator D and the genera-
tor G, we expect that generated samples 
created by G will more and more closely 
resemble real data. At the same time, D will 
have more and more trouble distinguishing 
between real and generated data.

Once the generator G does a good enough job 
to fool the discriminator D, we expect the 

output probability to be close to 1. 



GAN optimisation
The output
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• During training, as we update the parame-
ters of the discriminator D and the genera-
tor G, we expect that generated samples 
created by G will more and more closely 
resemble real data. At the same time, D will 
have more and more trouble distinguishing 
between real and generated data.

Once the generator G does a good enough job 
to fool the discriminator D, we expect the 

output probability to be close to 1. 

In the tutorial, we will see how to 

implement a basic GAN architecture.



Divergence minimisation
Kullback-Leibler (KL) divergence
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• The general goal of GANs to optimise the same loss    
function “in two different direction” has a connection         
to the game theory literature (see Nash equilibria,       
GT strategies or fictitious play).

• We can also connect the objective of generative models to minimising a 
divergence or distance. The most commonly used statistical distance 
measure is the Kullback-Leibler (KL) divergence (inspired by entropy):

The KL divergence DKL measures 
how two probability distributions, 

P and Q, differ from each other.

DKL(P||𝑄) = 	∫−∞
∞ p x log p x

q x
dx,

with probability densities p(x), q(x).



Divergence minimisation
KL divergence example
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• To illustrate how the KL divergence                
operates, let’s look at a ”target”        
distribution P shown in black and                  
two “test” distributions Q in blue:

DKL(P||𝑄) = 	0
−∞

∞
p x log

p x
q x dx

The divergence is zero when p(x) = 0, 
and large when p(x) and q(x) overlap.

The shaded blue 
region represents the 

integrand of the KL 
integral. The diver-
gence is smaller in 
the second case.



Divergence minimisation
Connection to maximum likelihood
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• Minimising the KL divergence implies:

• We can also show that minimising the KL divergence for two distribu-
tions P(x|𝜃∗) and P(x|𝜃) is equivalent to maximum likelihood estimation 
for P(x|𝜃) (i.e., finding the optimal parameters 𝜃 that best describe the 
data x):

For DKL(P||𝑄) = 0, we have P = Q.

θ$% = argmin& D$%[P x θ∗ ||P(x|θ)] = argmax& P x θ = θ'%(



Divergence minimisation
Jensen Shannon (JS) divergence

36

• Note that the KL divergence is not symmetric and,    
hence, not a true measure of distance, because

• We can, however, define an alternative divergence that satisfies the 
symmetry condition and always has a finite value, the so-called Jensen 
Shannon (JS) divergence, which is defined as

DKL(P||𝑄) ≠ D56(Q||P).

DKL(P||𝑄) = 	0
−∞

∞
p x log

p x
q x

dx

DJS(P||Q) =
1
2
DKL(𝑃||𝑀) +

1
2
DKL(𝑄||M)       where       𝑀 = 1

2
(𝑃 + 𝑄)



Divergence minimisation
Connection to GANs
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• Let us return to our optimisation problem for GANs:

• If the discriminator D(x) in our GAN is optimal, it is possible to show 
that the generator minimises the JS divergence between the real 
and the generated data distributions (see Goodfellow et al, 2014).

However, in practice D(x) is typically not optimal because 
(i) our computational resources are limited, and (ii) we only 
have access to samples and not the true data distribution. 



Divergence minimisation
Issue with the KL and JS divergence
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• Let us consider the following case, where we have two distributions 
p(x)* and p(x) that do not overlap along x, i.e., they have no 
overlapping support. In this case, we find for our two divergences:

• If the distributions of our true and gene-      
rated data do not overlap, our network      
does not “receive a signal” or learn.   

DKL(P∗||P) = ∞	 and    DJS(P∗||P) = log 2

DKL(P||𝑄) = 	0
−∞

∞
p x log

p x
q x dx



Divergence minimisation
Issue with the KL and JS divergence
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• Let us consider the following case, where we have two distributions 
p(x)* and p(x) that do not overlap along x, i.e., they have no 
overlapping support. In this case, we find for our two divergences:

• If the distributions of our true and gene-      
rated data do not overlap, our network      
does not “receive a signal” or learn. 

• Moving p “closer” to the true p* does not      
change the values of our divergences.  

DKL(P∗||P) = ∞	 and    DJS(P∗||P) = log 2

DKL(P||𝑄) = 	0
−∞

∞
p x log

p x
q x dx



Mode collapse
Another issue with GANs
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• Typically, we want our GAN to produce a wide variety of outputs. However, it 
is possible that the generator finds a particularly “good” output that is fooling 
the discriminator very well. This can happen when the discriminator is 
trapped in a local minimum (e.g., difficulty to distinguish digits 1 and 9). 
• The generator then starts to produce the same output (the same mode) over 

and over. The discriminator’s best strategy would be to always label that 
output as “fake” to encourage the generator to move away from this output, 
but the local minimum prevents that from happening.

• As a result, the generator 
keeps producing the same 
output and does not learn 
to represent the full data 
distribution.



Mode collapse
Two more examples
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• On the left, the GAN fails to produce digits with a single colour. Instead, 
all digits are generated with a mixture of the individual colours. On the 
right, we see that the faces seem to be generated from three modes and 
are barely recognisable as faces. See Fedus et al. (2018) for details.



Distance measures
Other alternatives I
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• To help with these issues in the original GAN for-            
mulation, we can use different divergences.

• A method that respects the geometry of the underlying space and 
captures the distance of two probability distributions whose support 
does not intersect is the so-called Wasserstein distance

• In a Wasserstein GAN, we optimise (Arjovsky et al, 2017):

D<=(P||Q) = sup
| > |!?@

𝔼A~C A f x − 𝔼D~E D f y

min
F

max
| G |!?@

𝔼A~C"#$# A D x − 𝔼H~C% H D(G z )

It has been empiri-
cally shown that the 

Wasserstein GAN 
generally avoids 
mode collapse.



Distance measures
Other alternatives II
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• For completeness, let us highlight two more alternatives:
• MMD GANs based on the Maximum Mean Discrepancy (MMD), which 

encodes the difference between feature means:

• f-GANs based on f-divergences (generalisations of the KL   
divergence), which again encode the differences between    
two probability distributions:

DIIG(P||Q) = sup
| > |ℋ?@

𝔼A~C A f x − 𝔼D~E D f y

D>(P||Q) = 6
JK

K
q x f

p x
q x

dx

Key idea: we 
can create 

GAN training 
criteria based 

on various 
divergences 

and distances.



GANs
Divergence minimisers? I
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• Remember that for implicit models,         
we do not have access to the pro-          
bability distribution of our real data,           
pdata(x). We only have samples. So,         
we cannot explicitly calculate our      
earlier divergence measures.

• Instead, we can use a trick and replace the intractable divergen-
ces by lower bounds (so-called variational lower bounds; see 
Nowozin et al. f-GAN: Training Generative Neural Samplers using 
Variational Divergence Minimization (2016) for details) that only 
depend on our samples, not the underlying distributions.

D>(P||Q) = 6
JK

K
q x f

p x
q x

dx



GANs
Divergence minimisers? II
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• The key role of the discriminator is then to learn how to distinguish bet-
ween samples from two distributions (not the distributions themselves).

• GANs do not do divergence minimi-
sation in practice, but D learns a 
“distance” (i.e., boundary) between 
the data and model distributions. 
These distances then provide useful 
gradients to update the model.

• Another advantage is that GANs 
learn smooth distances and do not 
fail even in those cases, where the 
underlying divergences would.



GANs vs. divergence minimisation
Key differences
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GANs
• PROs

• Easy access to generated samples

• Smooth learned loss function

• Empirically the underlying loss matters 
less than the NN architecture, the 
training regime and the data used

• CONs
• Dynamics are difficult to analyse

• Optimal convergence cannot be 
guaranteed

DIVERGENCE 
MINIMISATION

• PROs
• Optimal convergence is 

guaranteed

• Analysis of loss 
properties is straight 
forward

• CONs
• Access to good samples 

is very difficult



Evaluating GANs
The main issue
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• Now that we know how GANs work in practice, we can ask ourselves:

• We could focus, e.g., on the following metrics:
• How good is the quality of the produced samples?
• How good is our GAN at generalising to different tasks?
• Is our network learning meaningful patterns (representation learning)?

When can we say that a GAN is performing well?

No single evaluation metric captures all desired properties. In practice, 
we have to evaluate the GAN performance based on our end goal (e.g., 
classification accuracy in semi-supervised settings, human evaluation).



Evaluating GANs
Metrics: Inception Score (IS)
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• A key problem when evaluating GANs is that for these implicit models, we 
do not have access to the likelihoods (very expensive to approximate).

• To evaluate the GAN output, we can run the generated images through 
the Inception network that was pretrained on the ImageNet dataset. We 
then compare the distribution of labels obtained      
from real data with the distribution of labels from        
our samples using the KL divergence.

+ measures the sample quality and diversity
+ correlates with human evaluation

- does not measure differences beyond labels 
- depends on quality of pretrained classifier



• A key problem when evaluating GANs is that for these implicit models, we 
do not have access to the likelihoods (very expensive to approximate).

• To evaluate the GAN output, we can run the generated images through 
the Inception network that was pretrained on the ImageNet dataset. We 
then compare the distribution of labels obtained      
from real data with the distribution of labels from        
our samples using the KL divergence.

Evaluating GANs
Metrics: Inception Score (IS)
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+ measures the sample quality and diversity
+ correlates with human evaluation

- does not measure differences beyond labels 
- depends on quality of pretrained classifier

If our GAN performs well, the distribution of 

generated labels should be different. This 

corresponds to a larger KL divergence: A large 

Inception Score reflects good GAN performance! 



Evaluating GANs
Metrics: Fréchet Inception Distance (FID)
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• This approach also uses the pretrained Inception network. Instead of 
focusing on labels, we however run our samples and real data through 
the classifier to compare distributions of features in the final pooling 
layer. Both are compared using the so-called Fréchet distance.

+ measures the sample quality and diversity
+ correlates with human evaluation
+ measures feature level statistics 

(not just classes)
- depends on quality of pretrained classifier 

- biased for a small number of samples

A small Fréchet 
Inception Distance 
reflects good GAN 

performance! 



Evaluating GANs
Metrics: nearest neighbour classifier
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• We can use a nearest 
neighbour classifier to 
compare a generated 
sample to every single 
training image and 
predict the closest 
training images (e.g., 
by comparing absolute 
pixel value difference).

• This gives a qualitative 
measure if overfitting 
takes place or not.

Generated 
(test) 

sample



Introduction and key concepts

How do GANs work?

Types of GANs and their applications

Summary



Original architecture
Goodfellow et al. (2014)

53

• The paper focused on simple 
data structures (images with 
32x32 resolution) and simple 
models. For (a) (MNIST dataset), 
(b) (Toronto Face Database; TFD) 
and (c) (CIFAR-10 database) they 
applied a simple MLP for the 
discriminator and generator. 

• For (d) (CIFAR-10), they used a 
convolutional discriminator and 
deconvolutional generator.

• For the training process, images 
were flattened to vectors; i.e., the 
spatial structure was ignored.



Unconditional vs. conditional GANs
The difference
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• When introducing our generator, we focused on the scenario that the 
generator produces data samples from random noise. This allows 
us to capture the full spread of the data distribution. However, in this 
case, we do not have control over the kind of sample we produce.

• In conditional GANs, we 
can specify the kind of 
sample we want to output 
(i.e., bird vs. cat) by provi-
ding additional information 
(labels) to our generator.

Unconditional scenario



Class-conditional GAN
Modification to our original flow chart
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real or 
genera-

ted y

Real data: 
x ~ P’(x)

Deep NN 
discriminator: D

G(y, z)

D

Predicted labelx

Generated 
data: G(y, z)

y

Conditioning 
label: y



Conditional GANs
Mirza & Osindero (2014)
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• Mirza & Osindero generalised the original Goodfellow et al. algorithm 
to include additional conditional information, which was provided to 
the generator and the discriminator during training.



Laplacian GANs (LAPGANs) I
Denton et al. (2015)

57

• The authors intro-
duced a generative 
parametric model 
that produces high-
quality samples of 
images. To gene-
rate images from 
coarse to fine, they 
use a cascade of 
CNNs within a 
pyramid structure.



Laplacian GANs (LAPGANs) I
Denton et al. (2015)
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• The authors intro-
duced a generative 
parametric model 
that produces high-
quality samples of 
images. To gene-
rate images from 
coarse to fine, they 
use a cascade of 
CNNs within a 
pyramid structure.



Laplacian GANs (LAPGANs) II
Denton et al. (2015)
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• At each pyramid level, generators are trained independently to model 
the corresponding high-frequency structure. Once trained, the gene-
rative models are used to reconstruct a final generated output:



Laplacian GANs (LAPGANs) II
Denton et al. (2015)
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• At each pyramid level, generators are trained independently to model 
the corresponding high-frequency structure. Once trained, the gene-
rative models are used to reconstruct a final generated output:

This method performs 
well at higher 

resolutions. Human 
evaluation showed that 

roughly 40% of 
generated images with 

the LAPGAN were 
identified as real.



Deep Convolutional GANs (DCGANs) I
Radford et al. (2016)
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• The authors introduce a GAN approach that uses deep CNNs for the 
generator and discriminator. They imposed certain architecture 
guidelines to stabilise the otherwise very difficult training process:
• Batch normalisation in both G and D.
• Removal of fully connected hidden layers.
• Primarily ReLU activation for the generator.
• LeakyReLU activation for the discriminator.



Deep Convolutional GANs (DCGANs) II
Radford et al. (2016)
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• This approach also enabled the 
definition of a ”turning vector” for 
faces looking from left to right. By 
interpolating along this axis, the 
GAN samples was able to reliably 
transform their pose.

• The DCGAN generator’s 
noise/latent space also 
seems to have meaningful 
understanding of semantics.



Spectral normalisation (SN) GANs
Miyato et al. (2018)
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• One of the key difficulties when using GANs is to stabilise the training 
of the discriminator. To overcome this issue, Miyato et al. introduced 
a new normalisation for the network weights based on the weights’ 
spectral properties to restrict the choices of functions that can be 
used for the discriminator. This led to more diverse samples.



Self-Attention (SAGANs)
Zhang et al. (2019)
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• Traditional convolutional GANs generated high-resolution details in images 
as a function of spatially local points only. To improve on this, SAGANs 
allow feature generation based on global feature locations. This is imple-
mented via self-attention (updates are performed based on weighted sums 
of the features across all positions).
• Moreover, the discriminator checks that detailed features in distant portions 

of the image are consistent with each other.



BigGAN I
Brock et al. (2019)
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• Training dataset size (1.2 million images)
• Resolution in images (128, 256, 512)

• Despite the advances discussed so far, by the beginning of 2019, it was 
still difficult to generate high-resolution samples with large diversity for 
complex datasets such as ImageNet. To solve this, Brock et al. trained 
class-conditional GANs for the first time at large scale. They increased
• Batch size (2048)
• Model parameters (>100 million)



BigGAN II
Brock et al. (2019)
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• One of the key things the papers finds, is that because of the large sample 
size, they can use a so-called “truncation trick”, which refers to varying the 
scale of the noise, z, that is fed to the generator.

• For smaller (truncated) noise, they increase the fidelity of the images and 
create prototypical examples for each class. Larger noise on the other 
hand produces more variety and generates the full class distribution. 

G(y, z)

More truncation 
(smaller noise)

Less truncation 
(larger noise)



BigGAN III
Brock et al. (2019)
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• In addition, the paper presents a large empirical study to build a reliable (aka 
stable) prescription for large-scale GAN training focusing on, e.g., different 
losses, spectral normalisation, self-attention, and other tricks.

• However, there are new cases where BigGAN fails: (i) some classes are easier to 
generate (e.g., dogs are common, and cliffs have a single texture) than others, 
which are more dynamic or structured. (ii) images from one class can contain 
properties of another (class leakage).



GANs for audio synthesis
A few examples

68

WaveGAN reproduces spectral 
characteristics from various audio signals 

with high-temporal resolution (Donahue et 
al. Adversarial Audio Synthesis. 2019)

GAN-TTS for Text-to-Speech combines a 
feedforward generator with an ensemble 

of Random Window Discriminators 
(Binkowksi et al. High fidelity speech 

synthesis with adversarial networks. 2019)
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A few examples
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WaveGAN reproduces spectral 
characteristics from various audio signals 

with high-temporal resolution (Donahue et 
al. Adversarial Audio Synthesis. 2019)

GAN-TTS for Text-to-Speech combines a 
feedforward generator with an ensemble 

of Random Window Discriminators 
(Binkowksi et al. High fidelity speech 

synthesis with adversarial networks. 2019)
We now also have more complex GAN 

architectures that are used for video synthesis 

and prediction (e.g. DVD-GAN from Clark et al. 

(2019) or TriVD-GAN from Luc et al. (2020)).



GANs are everywhere
A few examples
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Summary



Summary I
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• GANs are a type of generative model that create new samples by 
framing the problem as a supervised learning problem with two 
competing components (two-player game).

• The generator creates new samples that the discriminator (teacher) 
tries to identify as “fake”. By optimising both at the same time, the 
generated output gets better and better. The discriminator aims to 
maximise the prediction accuracy, while the generator minimises it.

• As a result, GANs learn to approximate the probability distribution 
of the real data. However, GANs are an implicit framework, where we 
do not have direct access to the underlying likelihoods.



Summary II
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• Different GAN training criteria have been developed. These are 
inspired by certain divergence and distance measures to compare 
the similarity between (samples from) two probability distributions. 
However, GANs do not perform divergence minimisation in practice.

• Evaluating the performance of GANs is difficult as we do not have 
access to the likelihoods. Instead, different evaluation metrics are 
used (e.g., Inception Scores, Fréchet Inception Distance).

• Training GANs is challenging but the field is rapidly evolving, and a 
lot of progress has been made since 2014. GANs are now used for 
many tasks like image-to-image translation and generating realistic 
pictures of objects, people, etc. However, the difficulty in identifying 
outputs as fake also poses serious risks that need to be addressed.


