
Image Processing I:
Image classification and transfer learning

Research Methods in Data Science – 7PAM2015

Dr Vanessa Graber (based on slides by Dr Gülay Gürkan)

• Know who your module lecturers are and what they will teach.

• Understand basics of image classification and get to know an
unsupervised classification technique, i.e., self-organising maps.

• Know the advantages (and shortcomings) of transfer learning
approaches and the role of Big Data in training neural networks.

• Be able to implement a transfer learning approach for image
classification in Python.

Learning outcomes
After this lecture and the tutorial, you will:

1

Course overview

Image classification: the basics

Transfer learning

Self-organising maps

Summary

Course overview

Image classification: the basics

Transfer learning

Self-organising maps

Summary

• Lectures will be taught by three staff members from Centre for Astro-
physics Research in Department of Physics, Astronomy and Maths:

Module lecturers
Who you will interact with this semester

Dr Vanessa Graber
(she/her)

Dr Rob Yates
(he/him)

Dr Peter Scicluna
(he/him)

4

• Lectures will be taught by three staff members from Centre for Astro-
physics Research in Department of Physics, Astronomy and Maths:

Module lecturers
Who you will interact with this semester

Call me Vanessa
or Dr Graber

Dr Rob Yates
(he/him)

Module leader of
Research Methods

5

• Tutorials will be taught by all three lectures and two additional tutors:

Module tutors
Who you will interact with this semester

Dr Vandana Das
(she/her)

Dr Sunina Sharvy
(she/her)

6

Module overview
Part I – Dr Vanessa Graber

• 3 lectures on Image Processing with ML
• Image classification
• Transfer learning in computer vision
• Object detection
• Vision transformers
• Methods for image segmentation
• Big Data

1st assignment:
image segmentation

7

Module overview
Part II – Dr Rob Yates
• 4 lectures on DS workflows:

• Kaggle case studies
• End-to-end ML cases
• Data engineering
• Advanced pre-processing & visualisation
• Interpreting plots
• Explainable AI
• AutoML
• Network analysis
• Report writing

2nd assignment:
Kaggle challenge

8

Module overview
Part III – Dr Peter Scicluna

• 4 lectures on Large Language Models
• What are LLMs
• How to use and adapt LLMs
• Data, biases, scaling, models, and risks
• Beyond current LLMs: models & applications
• Research applications

3rd assignment:
large language models

9

Course overview

Image classification: the basics

Transfer learning

Self-organising maps

Summary

Image recognition
Overview

• Image recognition is a subfield
of computer vision that teaches
machines how to understand
and “see” visual data.

• We typically distinguish the
following tasks:
• Image classification
• Object detection
• Image segmentation

11

In this lecture, we will focus
on image classification.

Image classification
The central idea

12

• Image classification is a fundamental task in the field of image
processing using machine learning, where we categorise and
assign labels to images or parts of images.

• For classification, we
do not extract infor-
mation from images
(in contrast to object
detection and image
segmentation).

Credit: https://www.superannotate.com/blog/image-classification-basics

• When classifying images, we can distinguish those approaches that
have access to labels and perform supervised ML and those approa-
ches that do not require labels and perform unsupervised learning.

Image classification
Techniques

13

SUPERVISED METHODS
• Linear / logistic regression
• Decision trees

• Support vector machines
• Random forests

• Naïve Bayes methods
• K-nearest neighbour methods
• Neural networks

UNSUPERVISED METHODS
• Clustering algorithms
• Neural networks

Neural networks have been
outperforming traditional

methods since 2012.

Image classification
The power of convolutional
neural networks

• The availability of large
(labelled) databases has
led to a revolution in image
recognition. In particular,
ImageNet with >14 million
hand-annotated images
separated into >20,000
categories was crucial to
the development of (convo-
lutional) neural networks.

14

Credit: Jason Chuang

• The primary component of CNNs are convolutional layers:

CNN components I
A reminder

15

Aim: extracting local patterns
and features from input data

How: filters (kernels) slide
over the input data and at
each position, they perform
element-wise multiplication
and sum the results to pro-
duce feature maps

Convolutional layers capture
local patterns and preserve

the spatial relationships
between pixels.

Credit: Michael Plotke,
Crisluengo

• In addition, CNNs contain so-called pooling layers.

CNN components II
A reminder

16

Aim: reduce spatial dimensions,
speed up the computing time and
enhance translational invariance

How: down-sample the spatial
dimensions of input feature maps
via, e.g., max pooling (selecting the
maximum in a region) or average
pooling (calculating the average)

Pooling layers reduce the
amount of information in the
feature maps while retaining

important features.

• CNNs also contain fully connected layers.

CNN components III
A reminder

17

Aim: connect every neuron from
previous layer to next layer to learn
global patterns and relationships

How: each connection has a weight
and each neuron a bias; the output
is computed as a weighted sum of
the inputs plus bias followed by an
activation function

Fully connected layers are
used in the final CNN stages
to gather global information

and make predictions.

• Forward passes through a NN are essentially matrix calcu-
lations of weighted sums and non-linear activation functions:

• In supervised approaches, we define a cost
function to determine how good the network
prediction is with respect to our ground truths.
Network weights and biases are then updated
using the back propagation algorithm (which
is again a lot of linear algebra).

CNN optimisation
A reminder

18

output("#$%&	&%()*)
= activation	function	-

.
bias("#$%&	&%()*) +weights("#$%&	&%()*)

∗ activation	function bias(,*)-#./0	&%()*) +weights ,*)-#./0	&%()* (…)
Credit: Amini et al.

(2018)

• Image classification with CNNs has seen a lot of attention since the
success of AlexNet in 2012 and is now a well-studied problem.

• However, the key to successfully training CNNs is the availability of
large amounts of data to optimise the many free parameters of our
neural network. Moreover, we require labels for our data that are not
necessarily easy to come by.

Supervised vs unsupervised learning
The problem

19

What do we do if our datasets are
limited, or we do not have access to any

(or large amounts of) labelled data?

Question
time
Mentimeter quiz

Let’s take a few minutes
to recap what we have
discussed so far:

Go to menti.com
and enter the code

6461 2115.

20

Course overview

Image classification: the basics

Transfer learning

Self-organising maps

Summary

• When performing transfer learning, we first train a base network on a
base dataset to perform a base task (e.g., classify ImageNet images).
• We then repurpose the learned features and

transfer them to a second target network that
we train on a different target dataset and task.
• This process will work well if the features are

sufficiently general, i.e., they must be suitable
to analyse both the base and the target task.

Transfer learning
Overview

22

Transfer learning allows us to perform computationally efficient
and effective ML on smaller datasets by taking advantage of
prior knowledge (weights) from previously trained networks.

Crucial also for

object detection

and segmentation

(see next lectures).

• Transfer learning is popular in computer vision and natural language
processing. When processing images, we use the following steps:
• Load layers from a previously trained base model such as VGG16, ResNet, etc.

Transfer learning
Details

23

• Freeze weights and biases in these layers so that pre-
trained information is not lost in future training rounds.

• Add several new trainable layers on top of the frozen
layers to turn old features into predictions on new data.

• Train the new layers on your new dataset.
• (optional) Fine-tune your model by unfreezing all layers

(or part of them) and retraining them on the new data
with a low learning rate (task specific improvements by
incremental adaptation of pretrained features).

• Despite its potential, transfer learning can fail when
• high-level features at the end of the base model are insufficient to

differentiate classes in the target dataset. E.g., a pretrained model could
be excellent at identifying windows but struggle to determine whether a
window is closed or open. Retraining base layers can help in this case.

Potential issues
When transfer learning fails

24

• the target dataset is too small to provide sufficient
information to optimise the trainable layers, which
results in overfitting on the new dataset.
• the datasets are not very similar. E.g., in the case that

the base model was optimised on animal pictures, it
might struggle to identify images of plants and
transferring features may lead to poor accuracies.

• The discussion so far raises the question:

• Yosinski et al. (2014) break down this question into 3 further questions:

Learnt features
General vs. specific

25

How transferable are features in deep neural networks?

1. Can we quantify the degree to which a
particular layer is general or specific?

2. Does the transition occur suddenly at a single layer,
or is it spread out over several layers?

3. Where does this transition take place:
near the first, middle, or last layer of the network?

• From experience, we know that neural networks learn general features
first, while the last layers encode problem-specific features.

General features
Gabor filters

26

• From experience, we know that neural networks learn general features
first, while the last layers encode problem-specific features.
• In particular, neural networks trained on images tend to first learn fea-

tures that are similar to so-called Gabor filters or colour blobs inde-
pendent of the dataset or objective (supervised vs. unsupervised ML).

General features
Gabor filters

27

See Zeiler and Fergus (2013) for visualisations of feature maps.

• From experience, we know that neural networks learn general features
first, while the last layers encode problem-specific features.
• In particular, neural networks trained on images tend to first learn fea-

tures that are similar to so-called Gabor filters or colour blobs inde-
pendent of the dataset or objective (supervised vs. unsupervised ML).

General features
Gabor filters

28

See Zeiler and Fergus (2013) for visualisations of feature maps. Gabor filters from Ferreira et al. (2009)

• To understand the details of the transition from generic to specific
Yosinski et al. used a systematic approach to analyse learnt features.

• For this experiment, they first create two tasks A and B by randomly
splitting the 1000 ImageNet classes into two groups each containing
500 classes and around 645,000 example images.

• They then train two
eight-layer CNNs on
both datasets to obtain
the baseA and the
baseB networks.

General vs. specific features
A systematic approach (Yosinski et al. 2014) I

29

• Next, they copied the first n layers of the base networks and trained
several new networks (in the example below, we set n=3) :
• A selffer (control) network B3B: first 3 layers are copied from baseB and frozen. The

remaining 5 layers are initialised randomly and then trained on B.
• A transfer (test) network A3B: first 3 layers are copied from baseA and frozen. The

remaining 5 layers are initialised randomly and then trained on B.
• Add the cases, B3B+ and A3B + where first three layers are not frozen, but all can learn.
• Repeat in both directions and learn B3A, etc.

General vs. specific features
A systematic approach (Yosinski et al. 2014) II

The idea: if A3B performs as well as baseB,
there is evidence that the n=3 layer

features are general. If the performance
suffers, then the layers are specific to A.

30

• By studying the accuracy of the
networks for different n, they find
• Saving the first (n=1,2) layers of baseB

and retraining on the same dataset B, the
same performance can be achieved.

• Saving the first n=3,4,5,6 layers of baseB
and retraining on the same dataset B, the
performance surprisingly drops.

• This is due to so-called co-adaption bet-
ween different layers, i.e., the features are
not independent but interact in a complex,
fragile way with each other. This cannot
be relearnt in the upper layers alone.

• Drop does not appear for the fine-tuned
network BnB+, where all layers can learn.

General vs. specific features
Results (Yosinski et al. 2014) I

31

• By studying the accuracy of the
networks for different n, they find
• Saving the first (n=1,2) layers of baseA

and retraining on the dataset B, the same
performance can be achieved. Features
in the first two layers are general!

• Saving the first (n=3,4,5,6,7) layers of
baseA and retraining on the B, the
performance drops due to (i) co-adaption
(for layers 3,4,5) and (ii) more specific
features (for layers 6,7).

General vs. specific features
Results (Yosinski et al. 2014) II

32

Transferring features and then fine-tuning
them (AnB+) results in networks that
generalise better than those trained
directly on the target dataset (BnB+).

• They repeated the experiment with two different sets A and B that were
not randomly sampled from ImageNet (e.g., A and B are similar and share
some overlap) but instead hand-picked to create different A and B sets.

General vs. specific features
Results (Yosinski et al. 2014) III

33

The transferability gap when using
frozen features grows more quickly

as n increases for dissimilar tasks
(hexagons) than similar tasks

(diamonds). The drop is 8% vs 25% in
the final layer for similar tasks vs

dissimilar tasks. However, transfer
learning performs still better than a

random initialisation.

• As you will see during the first tutorial, implementing a transfer learning
approach with TensorFlow and Keras is straightforward.

• Loading a specific model can be achieved as follows:

Python implementation
TensorFlow and Keras library

34

base_model = tf.keras.applications.vgg19.VGG19(
 include_top=False,
 weights='imagenet’,
 input_shape=(115, 115, 3),
 pooling='avg’
)

load specific
architecture

whether to
include the

3 fully-
connected

layers at the
top of the
network

load pretrained
ImageNet weights

input shape (width, height) of
the images and 3 channels

choice of pooling

• Once the base model is loaded, we can add additional layers:

Python implementation II
TensorFlow and Keras library

35

model = tf.keras.models.Sequential()
model.add(base_model)
model.add(tf.keras.layers.Dense(256,
 activation='relu'))
model.add(tf.keras.layers.Dense(5,
 activation='softmax'))
base_model.trainable=False

make an instance of the
sequential class

add base model

add a dense layer with
256 neurons and

Rectified Linear Unit
activation functionfreeze the

base model

add a dense layer with 5
neurons and softmax

activation function for a
classification task

• Once the base model is loaded, we can add additional layers:

Python implementation II
TensorFlow and Keras library

36

model = tf.keras.models.Sequential()
model.add(base_model)
model.add(tf.keras.layers.Dense(256,
 activation='relu'))
model.add(tf.keras.layers.Dense(5,
 activation='softmax'))
base_model.trainable=False

make an instance of the
sequential class

add base model

add a dense layer with
256 neurons and

Rectified Linear Unit
activation functionfreeze the

base model

add a dense layer with 5
neurons and softmax

activation function for a
classification task

See first tutorial for
more details!

Question
time
Mentimeter quiz

Let’s take a few minutes
to recap what we have
discussed so far:

Go to menti.com
and enter the code

3356 0743.

37

Course overview

Image classification: the basics

Transfer learning

Self-organising maps

Summary

• We discussed earlier how CNNs learn by defining a loss function and
performing gradient descent through back propagation.

• However, this supervised optimisation
approach requires labels. These are often
not available or difficult to come by, e.g.,
in object detection or image segmentation.

The lack of labels
Supervised vs. unsupervised learning

39

There are alternative artificial neural
network approaches that are

unsupervised and closely inspired by
the analogy with our human brains.

Self-organising
maps (SOMs)

• Self-organising maps are also referred to as Kohonen maps/networks
(Kohonen 1982) perform unsupervised learning by using a competitive
learning algorithm that is based on dimensionality reduction.

Self-organising maps
Overview

40

• These networks are closely con-
nected to the neurobiological
concept of topographic map
formation. In these maps, a
spatial location of an output
neuron corresponds to a
particular domain or feature
from the complex input space.

Credit: Jkwchui

Connection to topographic maps
Brains vs SOMs

41

BRAINS
• Different regions of the cerebral

cortex are specialising in pro-
cessing specific features or
functions like visual processing,
motor control and language.

• Different regions are organised in
a spatial manner with adjacent
areas representing similar
features/functions. This spatial
organisation is often referred to
as topographic mapping.

SELF-ORGANISING MAPS
• SOMs are designed to represent

patterns in input data in a way
that preserves their similarity.
Neighbouring nodes respond to
similar input patterns, enabling
the extraction of features.

• SOMs are also organised spatially
which allows them to represent
high-dimensional input in a low-
dimensional (typically 2D) space.

Credit:
eveleen

Self-organising maps
An example

42

• In an SOM, weights belong to
individual output neurons and no
activation functions are present.
• Instead of being the result of a

sum of weights as in standard
CNN training, the SOM output
neurons are directly represented
by their weights (coordinates).

SOMs allow us to uncover
categories within complex

input data, independent
of the input dimensions.

(multi-D) input layer

interconnected
weights

(visible) lower-D
output layer

individual
neurons

Adapted from Faradonbeh et al. (2019)

• In the SOM, neural network neurons (also called
nodes or reference vectors) are arranged in a
single rectangular or hexagonal 2D grid. The
network training then proceeds in four steps.

• Step 1 – Initialisation: Weights are initialised with random values.

• Step 2 – Competition: For a random input vector, we determine
the node for which the weights are closest to the input (the Best
Matching Unit, BMU) based on some discriminant function. A
common choice is the squared Euclidean distance. This closest
neuron (BMU) “wins” (the “winner takes it all” scheme).

Self-organisation
Steps 1 and 2 – Initialisation and Competition

43

(multi-D) input layer

interconnected
weights

(visible) lower-D
output layer

individual
neurons

Adapted from Faradonbeh et al. (2019)

• Step 3 – Cooperation: The winning neuron
determines the spatial location of a topological
neighbourhood of excited neutrons. Over time,
this neighbourhood will get smaller.

• Step 4 – Adaption: The winning weight vector (and the other
excited neurons) are rewarded by adjusting their weights to
resemble the sample input even more. The further away from the
BMU, the less the weights get altered and the nodes learn.

Self-organisation
Steps 3 and 4 – Cooperation and Adaption

44

(multi-D) input layer

interconnected
weights

(visible) lower-D
output layer

individual
neurons

Steps 2 to 4 are then repeated for all input
vectors for a (large) number of cycles.

Adapted from Faradonbeh et al. (2019)

• Let us look at a specific example
where we have a 1D output map
with 3 neurons, W1, W2 and W3.
• The corresponding weights Wij

are initialised at random.
• We are also given a range of input

layers that correspond to 1D
vectors with 3 entries, x1, x2, x3.
• For our competitive learning, we

calculate the Euclidean distance
of each neuron for one test input.

Self-organising maps
The training process in practice I

45

W11=5
13

W13=20
14 W31=2

12

7
3

W33=30

W1 W3
W2

x1 x2 x3

0.10 0.20 0.13

0.50 0.30 0.70

… … …

• Let us look at a specific example
where we have a 1D output map
with 3 neurons, W1, W2 and W3.
• The corresponding weights Wij

are initialised at random.
• We are also given a range of input

layers that correspond to 1D
vectors with 3 entries, x1, x2, x3.
• For our competitive learning, we

calculate the Euclidean distance
of each neuron for one test input.

Self-organising maps
The training process in practice I

46

W11=5
13

W13=20
14 W31=2

12

7
3

W33=30

W1 W3
W2

x1 x2 x3

0.10 0.20 0.13

0.50 0.30 0.70

… … …

d1 = 𝐱 −𝐖" = &
#

3
x# −W1j

2

= 0.5 − 5 2+ 0.3 − 13 2+ 0.7 − 20 2	 = 23.5

d' = 15.2 d(= 31.6

• Let us look at a specific example
where we have a 1D output map
with 3 neurons, W1, W2 and W3.
• The corresponding weights Wij

are initialised at random.
• We are also given a range of input

layers that correspond to 1D
vectors with 3 entries, x1, x2, x3.
• For our competitive learning, we

calculate the Euclidean distance
of each neuron for one test input.

Self-organising maps
The training process in practice I

47

W11=5
13

W13=20
14 W31=2

12

7
3

W33=30

W1 W3
W2

x1 x2 x3

0.10 0.20 0.13

0.50 0.30 0.70

… … …

d1 = 𝐱 −𝐖" = &
#

3
x# −W1j

2

= 0.5 − 5 2+ 0.3 − 13 2+ 0.7 − 20 2	 = 23.5

d' = 15.2 d(= 31.6

• We have found that W2 is our winner neuron (BMU). In our case, the
neighbourhood is simple as we only have two more neurons. However,
in practice, we could also choose a Gaussian region around the BMU.

Self-organising maps
The training process in practice II

48

• We have found that W2 is our winner neuron (BMU). In our case, the
neighbourhood is simple as we only have two more neurons. However,
in practice, we could also choose a Gaussian region around the BMU.

• The update of our network weights for iteration s+1 is then as follows

 where LR is the learning rate & θ:; BMU the neighbourhood function:

Self-organising maps
The training process in practice II

49

𝐖!
"#$ = 𝐖!

" + LR" ∗ θ!" BMU ∗ 𝐱 −𝐖!
"

• We have found that W2 is our winner neuron (BMU). In our case, the
neighbourhood is simple as we only have two more neurons. However,
in practice, we could also choose a Gaussian region around the BMU.

• The update of our network weights for iteration s+1 is then as follows

 where LR is the learning rate & θ:; BMU the neighbourhood function:

Self-organising maps
The training process in practice II

50

𝐖!
"#$ = 𝐖!

" + LR" ∗ θ!" BMU ∗ 𝐱 −𝐖!
"

θ#0 BMU ∝ exp −
𝐖#

0 −𝐖123
0

2 σ0 4 σ0 = σ5	exp −
s
s$

LR0 = LR5	exp −
s
s$

• We have found that W2 is our winner neuron (BMU). In our case, the
neighbourhood is simple as we only have two more neurons. However,
in practice, we could also choose a Gaussian region around the BMU.

• The update of our network weights for iteration s+1 is then as follows

 where LR is the learning rate & θ:; BMU the neighbourhood function:

Self-organising maps
The training process in practice II

51

𝐖!
"#$ = 𝐖!

" + LR" ∗ θ!" BMU ∗ 𝐱 −𝐖!
"

θ#0 BMU ∝ exp −
𝐖#

0 −𝐖123
0

2 σ0 4 σ0 = σ5	exp −
s
s$

LR0 = LR5	exp −
s
s$

The LR and the size of the neighbourhood

σ depend on the epoch and several

hyperparameters. Both decrease with time

so that the map eventually converges.

• We can illustrate this training process as follows:

Self-organising maps
Dimensionality reduction

52

Yellow neuron is the BMU
which moves closer to the

(white) training sample.

Credit: mcld

• We can illustrate this training process as follows:

Self-organising maps
Dimensionality reduction

53

Yellow neuron is the BMU
which moves closer to the

(white) training sample.

Credit: mcld

Credit: https://algobeans.com/2017/11/02/self-organizing-map/

• We can illustrate this training process as follows:

Self-organising maps
Dimensionality reduction

54

Yellow neuron is the BMU
which moves closer to the

(white) training sample.

• Ultimately, dimensionality reduction
in SOMs depends on the distance
measure between neurons used to
map the input data onto the 2D plane.

Credit: mcld

Credit: https://algobeans.com/2017/11/02/self-organizing-map/

• Self-organising maps have found a wide range of applications where
labelling data is often difficult. These include, for example,
• Image classification
• Text mining & information detection
• Anomaly detection, e.g., in banking
• Failure mode and effects analysis

• However, SOMs also have some shortcomings:
• Training SOMs takes time due to distance calculations.
• They do not build a generative data model and understand its formation.
• SOMs can be difficult to train for categorical or mixed-type data.

Self-organising maps
General applications and some disadvantages

55

• Gene expression analysis
• Finding representative data in
 large datasets
• Astronomy wide-field surveys

Self-organising maps
Two example applications

56

SOM of DNA sequences of Bacteria & Archaea
to analyse biodiversity (Weber et al. 2011)

SOM of Radio Galaxy Zoo images to identify
spatial features (Galvin et al. 2019)

Question
time
Mentimeter quiz

Let’s take a few minutes
to recap what we have
discussed so far:

Go to menti.com
and enter the code

3686 2739.

57

Course overview

Image classification: the basics

Transfer learning

Self-organising maps

Summary

• Kohonen, Self-organized formation of topologically correct feature maps, Biological
Cybernetics, 43, 59 (1982)

• Yin, The Self-Organizing Maps: Background, Theories, Extensions and Applications, Studies
in Computational Intelligence, 115, 715 (2008)

• Ferreira et al., Modifications and Improvements on Iris Recognition, Conference Proceedings,
BIOSIGNALS, Portugal (2009)

• Weber et al., Practical application of self-organizing maps to interrelate biodiversity and
functional data in NGS-based metagenomics, ISME Journal, 5, 918 (2011)

• Zeiler and Fergus, Visualizing and Understanding Convolutional Networks, preprint
arXiv:1311.2901 (2013)

• Yosinski et al., How transferable are features in deep neural networks?, Advances in Neural
Information Processing Systems 27 (NeurIPS 2014)

• Galvin et al., Radio Galaxy Zoo: Knowledge Transfer Using Rotationally Invariant Self-
organizing Maps, PASP, 131, 108009 (2019)

Further reading
Summary of references discussed today

59

Summary
• We discussed the course outline and your lecturer for this module.
• Image classification is a fundamental task in image processing,

where we assign labels to images. This is generally simpler than
object detection and segmentation, which we will cover next.
• Large labelled datasets like ImageNet were crucial to obtain the

superior performance of neural networks in image classification.
• When labels are difficult to obtain or limited data is available, transfer

learning allows us to use knowledge from previously trained models,
because the first layers of a CNN learn generic image features.
• Additionally, self-organising maps can be used for unsupervised

learning. Inspired by topographic maps, they allow us to reduce the
dimensionality of complex data via a competitive learning approach.

60

