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• Know who your module lecturers are and what they will teach.

• Understand basics of image classification and get to know an 
unsupervised classification technique, i.e., self-organising maps.

• Know the advantages (and shortcomings) of transfer learning 
approaches and the role of Big Data in training neural networks.

• Be able to implement a transfer learning approach for image 
classification in Python.

Learning outcomes
After this lecture and the tutorial, you will:
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• Lectures will be taught by three staff members from Centre for Astro-
physics Research in Department of Physics, Astronomy and Maths:

Module lecturers
Who you will interact with this semester

Dr Vanessa Graber 
(she/her)

Dr Rob Yates
(he/him)

Dr Peter Scicluna
(he/him) 
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• Lectures will be taught by three staff members from Centre for Astro-
physics Research in Department of Physics, Astronomy and Maths:

Module lecturers
Who you will interact with this semester

Call me Vanessa 
or Dr Graber

Dr Rob Yates
(he/him)

Module leader of 
Research Methods
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• Tutorials will be taught by all three lectures and two additional tutors:

Module tutors
Who you will interact with this semester

Dr Vandana Das
(she/her)

Dr Sunina Sharvy
(she/her)
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Module overview
Part I – Dr Vanessa Graber

• 3 lectures on Image Processing with ML
• Image classification
• Transfer learning in computer vision
• Object detection
• Vision transformers
• Methods for image segmentation
• Big Data

1st assignment:
image segmentation
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Module overview
Part II – Dr Rob Yates
• 4 lectures on DS workflows:

• Kaggle case studies
• End-to-end ML cases
• Data engineering
• Advanced pre-processing & visualisation
• Interpreting plots
• Explainable AI
• AutoML
• Network analysis
• Report writing

2nd assignment: 
Kaggle challenge
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Module overview
Part III – Dr Peter Scicluna

• 4 lectures on Large Language Models
• What are LLMs
• How to use and adapt LLMs
• Data, biases, scaling, models, and risks
• Beyond current LLMs: models & applications
• Research applications

3rd assignment:
large language models
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Image recognition
Overview

• Image recognition is a subfield 
of computer vision that teaches 
machines how to understand 
and “see” visual data. 

• We typically distinguish the 
following tasks:
• Image classification
• Object detection
• Image segmentation

11

In this lecture, we will focus 
on image classification.



Image classification
The central idea
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• Image classification is a fundamental task in the field of image 
processing using machine learning, where we categorise and 
assign labels to images or parts of images.

• For classification, we         
do not extract infor-        
mation from images         
(in contrast to object        
detection and image       
segmentation).

Credit: https://www.superannotate.com/blog/image-classification-basics



• When classifying images, we can distinguish those approaches that 
have access to labels and perform supervised ML and those approa-
ches that do not require labels and perform unsupervised learning.

Image classification
Techniques
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SUPERVISED METHODS
• Linear / logistic regression
• Decision trees

• Support vector machines
• Random forests

• Naïve Bayes methods
• K-nearest neighbour methods
• Neural networks

UNSUPERVISED METHODS
• Clustering algorithms
• Neural networks

Neural networks have been 
outperforming traditional 

methods since 2012.



Image classification
The power of convolutional 
neural networks

• The availability of large 
(labelled) databases has 
led to a revolution in image 
recognition. In particular, 
ImageNet with >14 million 
hand-annotated images 
separated into >20,000 
categories was crucial to 
the development of (convo-
lutional) neural networks.
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Credit: Jason Chuang



• The primary component of CNNs are convolutional layers:

CNN components I
A reminder

15

Aim: extracting local patterns 
and features from input data

How: filters (kernels) slide 
over the input data and at 
each position, they perform 
element-wise multiplication 
and sum the results to pro-
duce feature maps

Convolutional layers capture 
local patterns and preserve 

the spatial relationships 
between pixels.

Credit: Michael Plotke,
Crisluengo



• In addition, CNNs contain so-called pooling layers.

CNN components II
A reminder
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Aim: reduce spatial dimensions, 
speed up the computing time and 
enhance translational invariance

How: down-sample the spatial 
dimensions of input feature maps 
via, e.g., max pooling (selecting the 
maximum in a region) or average 
pooling (calculating the average)

Pooling layers reduce the 
amount of information in the 
feature maps while retaining 

important features.



• CNNs also contain fully connected layers.

CNN components III
A reminder
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Aim: connect every neuron from 
previous layer to next layer to learn 
global patterns and relationships

How: each connection has a weight 
and each neuron a bias; the output 
is computed as a weighted sum of 
the inputs plus bias followed by an 
activation function

Fully connected layers are 
used in the final CNN stages 
to gather global information 

and make predictions.



• Forward passes through a NN are essentially matrix calcu-   
lations of weighted sums and non-linear activation functions:

• In supervised approaches, we define a cost     
function to determine how good the network     
prediction is with respect to our ground truths.        
Network weights and biases are then updated     
using the back propagation algorithm (which     
is again a lot of linear algebra).

CNN optimisation
A reminder
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output("#$%&	&%()*)
= activation	function	-

.
bias("#$%&	&%()*) +weights("#$%&	&%()*)

∗ activation	function bias(,*)-#./0	&%()*) +weights ,*)-#./0	&%()* (… )
Credit: Amini et al. 

(2018)



• Image classification with CNNs has seen a lot of attention since the 
success of AlexNet in 2012 and is now a well-studied problem.

• However, the key to successfully training CNNs is the availability of 
large amounts of data to optimise the many free parameters of our 
neural network. Moreover, we require labels for our data that are not 
necessarily easy to come by. 

Supervised vs unsupervised learning
The problem
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What do we do if our datasets are 
limited, or we do not have access to any 

(or large amounts of) labelled data?



Question 
time
Mentimeter quiz

Let’s take a few minutes 
to recap what we have 
discussed so far:

Go to menti.com 
and enter the code 

6461 2115.
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• When performing transfer learning, we first train a base network on a 
base dataset to perform a base task (e.g., classify ImageNet images).
• We then repurpose the learned features and     

transfer them to a second target network that        
we train on a different target dataset and task.
• This process will work well if the features are     

sufficiently general, i.e., they must be suitable          
to analyse both the base and the target task.

Transfer learning
Overview
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Transfer learning allows us to perform computationally efficient 
and effective ML on smaller datasets by taking advantage of 
prior knowledge (weights) from previously trained networks.

Crucial also for 

object detection 

and segmentation 

(see next lectures).



• Transfer learning is popular in computer vision and natural language 
processing. When processing images, we use the following steps:
• Load layers from a previously trained base model such as VGG16, ResNet, etc.

Transfer learning
Details
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• Freeze weights and biases in these layers so that pre- 
trained information is not lost in future training rounds.

• Add several new trainable layers on top of the frozen 
layers to turn old features into predictions on new data.

• Train the new layers on your new dataset.
• (optional) Fine-tune your model by unfreezing all layers 

(or part of them) and retraining them on the new data 
with a low learning rate (task specific improvements by 
incremental adaptation of pretrained features). 



• Despite its potential, transfer learning can fail when
• high-level features at the end of the base model are insufficient to 

differentiate classes in the target dataset. E.g., a pretrained model could   
be excellent at identifying windows but struggle to determine whether a 
window is closed or open. Retraining base layers can help in this case.

Potential issues
When transfer learning fails
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• the target dataset is too small to provide sufficient 
information to optimise the trainable layers, which 
results in overfitting on the new dataset.
• the datasets are not very similar. E.g., in the case that 

the base model was optimised on animal pictures, it 
might struggle to identify images of plants and 
transferring features may lead to poor accuracies.



• The discussion so far raises the question:

• Yosinski et al. (2014) break down this question into 3 further questions:

Learnt features
General vs. specific
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How transferable are features in deep neural networks?

1. Can we quantify the degree to which a 
particular layer is general or specific?

2. Does the transition occur suddenly at a single layer, 
or is it spread out over several layers?

3. Where does this transition take place: 
near the first, middle, or last layer of the network?



• From experience, we know that neural networks learn general features 
first, while the last layers encode problem-specific features. 

General features
Gabor filters

26



• From experience, we know that neural networks learn general features 
first, while the last layers encode problem-specific features. 
• In particular, neural networks trained on images tend to first learn fea-

tures that are similar to so-called Gabor filters or colour blobs inde- 
pendent of the dataset or objective (supervised vs. unsupervised ML).

General features
Gabor filters
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See Zeiler and Fergus (2013) for visualisations of feature maps.



• From experience, we know that neural networks learn general features 
first, while the last layers encode problem-specific features. 
• In particular, neural networks trained on images tend to first learn fea-

tures that are similar to so-called Gabor filters or colour blobs inde- 
pendent of the dataset or objective (supervised vs. unsupervised ML).

General features
Gabor filters
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See Zeiler and Fergus (2013) for visualisations of feature maps. Gabor filters from Ferreira et al. (2009)



• To understand the details of the transition from generic to specific 
Yosinski et al. used a systematic approach to analyse learnt features.

• For this experiment, they first create two tasks A and B by randomly 
splitting the 1000 ImageNet classes into two groups each containing     
500 classes and around 645,000 example images.

• They then train two         
eight-layer CNNs on          
both datasets to obtain                     
the baseA and the         
baseB networks.

General vs. specific features
A systematic approach (Yosinski et al. 2014) I
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• Next, they copied the first n layers of the base networks and trained 
several new networks (in the example below, we set n=3) :
• A selffer (control) network B3B: first 3 layers are copied from baseB and frozen. The 

remaining 5 layers are initialised randomly and then trained on B.
• A transfer (test) network A3B: first 3 layers are copied from baseA and frozen. The 

remaining 5 layers are initialised randomly and then trained on B.
• Add the cases, B3B+ and A3B + where first three layers are not frozen, but all can learn.
• Repeat in both directions and learn B3A, etc.

General vs. specific features
A systematic approach (Yosinski et al. 2014) II

The idea: if A3B performs as well as baseB, 
there is evidence that the n=3 layer 

features are general. If the performance 
suffers, then the layers are specific to A.
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• By studying the accuracy of the 
networks for different n, they find
• Saving the first (n=1,2) layers of baseB 

and retraining on the same dataset B, the 
same performance can be achieved.

• Saving the first n=3,4,5,6 layers of baseB 
and retraining on the same dataset B, the 
performance surprisingly drops. 

• This is due to so-called co-adaption bet-
ween different layers, i.e., the features are 
not independent but interact in a complex, 
fragile way with each other. This cannot 
be relearnt in the upper layers alone.

• Drop does not appear for the fine-tuned 
network BnB+, where all layers can learn.

General vs. specific features
Results (Yosinski et al. 2014) I
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• By studying the accuracy of the 
networks for different n, they find
• Saving the first (n=1,2) layers of baseA 

and retraining on the dataset B, the same 
performance can be achieved. Features 
in the first two layers are general!

• Saving the first (n=3,4,5,6,7) layers of 
baseA and retraining on the  B, the 
performance drops due to (i) co-adaption 
(for layers 3,4,5) and (ii) more specific 
features (for layers 6,7).

General vs. specific features
Results (Yosinski et al. 2014) II
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Transferring features and then fine-tuning 
them (AnB+) results in networks that 
generalise better than those trained 
directly on the target dataset (BnB+).



• They repeated the experiment with two different sets A and B that were 
not randomly sampled from ImageNet (e.g., A and B are similar and share 
some overlap) but instead hand-picked to create different A and B sets.

General vs. specific features
Results (Yosinski et al. 2014) III
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The transferability gap when using 
frozen features grows more quickly 

as n increases for dissimilar tasks 
(hexagons) than similar tasks 

(diamonds). The drop is 8% vs 25% in 
the final layer for similar tasks vs 

dissimilar tasks. However, transfer 
learning performs still better than a 

random initialisation.



• As you will see during the first tutorial, implementing a transfer learning 
approach with TensorFlow and Keras is straightforward.

• Loading a specific model can be achieved as follows:

Python implementation
TensorFlow and Keras library

34

base_model = tf.keras.applications.vgg19.VGG19(
  include_top=False,
  weights='imagenet’,
  input_shape=(115, 115, 3),
  pooling='avg’
  )

load specific 
architecture

whether to 
include the    

3 fully-
connected 

layers at the 
top of the 
network

load pretrained 
ImageNet weights

input shape (width, height) of 
the images and 3 channels

choice of pooling



• Once the base model is loaded, we can add additional layers:

Python implementation II
TensorFlow and Keras library
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model = tf.keras.models.Sequential()
model.add(base_model)
model.add(tf.keras.layers.Dense(256, 
 activation='relu'))
model.add(tf.keras.layers.Dense(5,
 activation='softmax'))
base_model.trainable=False

make an instance of the 
sequential class  

add base model

add a dense layer with 
256 neurons and 

Rectified Linear Unit 
activation functionfreeze the 

base model

add a dense layer with 5 
neurons and softmax 

activation function for a 
classification task



• Once the base model is loaded, we can add additional layers:

Python implementation II
TensorFlow and Keras library

36

model = tf.keras.models.Sequential()
model.add(base_model)
model.add(tf.keras.layers.Dense(256, 
 activation='relu'))
model.add(tf.keras.layers.Dense(5,
 activation='softmax'))
base_model.trainable=False

make an instance of the 
sequential class  

add base model

add a dense layer with 
256 neurons and 

Rectified Linear Unit 
activation functionfreeze the 

base model

add a dense layer with 5 
neurons and softmax 

activation function for a 
classification task

See first tutorial for 
more details!



Question 
time
Mentimeter quiz

Let’s take a few minutes 
to recap what we have 
discussed so far:

Go to menti.com 
and enter the code 

3356 0743.
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• We discussed earlier how CNNs learn by defining a loss function and 
performing gradient descent through back propagation.

• However, this supervised optimisation      
approach requires labels. These are often        
not available or difficult to come by, e.g.,           
in object detection or image segmentation.

The lack of labels
Supervised vs. unsupervised learning

39

There are alternative artificial neural 
network approaches that are 

unsupervised and closely inspired by 
the analogy with our human brains.

Self-organising 
maps (SOMs)



• Self-organising maps are also referred to as Kohonen maps/networks 
(Kohonen 1982) perform unsupervised learning by using a competitive 
learning algorithm that is based on dimensionality reduction.

Self-organising maps
Overview

40

• These networks are closely con- 
nected to the neurobiological 
concept of topographic map 
formation. In these maps, a 
spatial location of an output 
neuron corresponds to a 
particular domain or feature 
from the complex input space.

Credit: Jkwchui



Connection to topographic maps
Brains vs SOMs

41

BRAINS
• Different regions of the cerebral 

cortex are specialising in pro-
cessing specific features or 
functions like visual processing, 
motor control and language.

• Different regions are organised in 
a spatial manner with adjacent 
areas representing similar 
features/functions. This spatial 
organisation is often referred to 
as topographic mapping.

SELF-ORGANISING MAPS
• SOMs are designed to represent 

patterns in input data in a way 
that preserves their similarity. 
Neighbouring nodes respond to 
similar input patterns, enabling 
the extraction of features.

• SOMs are also organised spatially 
which allows them to represent 
high-dimensional input in a low-
dimensional (typically 2D) space.

Credit: 
eveleen



Self-organising maps
An example

42

• In an SOM, weights belong to 
individual output neurons and no 
activation functions are present.
• Instead of being the result of a 

sum of weights as in standard 
CNN training, the SOM output 
neurons are directly represented 
by their weights (coordinates).

SOMs allow us to uncover 
categories within complex 

input data, independent    
of the input dimensions.

(multi-D) input layer

interconnected 
weights

(visible) lower-D 
output layer

individual 
neurons

Adapted from Faradonbeh et al. (2019)



• In the SOM, neural network neurons (also called             
nodes or reference vectors) are arranged in a           
single rectangular or hexagonal 2D grid. The    
network training then proceeds in four steps.

• Step 1 – Initialisation: Weights are initialised with random values.

• Step 2 – Competition: For a random input vector, we determine  
the node for which the weights are closest to the input (the Best 
Matching Unit, BMU) based on some discriminant function. A 
common choice is the squared Euclidean distance. This closest 
neuron (BMU) “wins” (the “winner takes it all” scheme).

Self-organisation
Steps 1 and 2 – Initialisation and Competition
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(multi-D) input layer

interconnected 
weights

(visible) lower-D 
output layer

individual 
neurons

Adapted from Faradonbeh et al. (2019)



• Step 3 – Cooperation: The winning neuron     
determines the spatial location of a topological    
neighbourhood of excited neutrons. Over time,      
this neighbourhood will get smaller.

• Step 4 – Adaption: The winning weight vector (and the other 
excited neurons) are rewarded by adjusting their weights to 
resemble the sample input even more. The further away from the 
BMU, the less the weights get altered and the nodes learn.

Self-organisation
Steps 3 and 4 – Cooperation and Adaption
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(multi-D) input layer

interconnected 
weights

(visible) lower-D 
output layer

individual 
neurons

Steps 2 to 4 are then repeated for all input 
vectors for a (large) number of cycles.

Adapted from Faradonbeh et al. (2019)



• Let us look at a specific example 
where we have a 1D output map 
with 3 neurons, W1, W2 and W3.
• The corresponding weights Wij 

are initialised at random.
• We are also given a range of input 

layers that correspond to 1D 
vectors with 3 entries, x1, x2, x3.
• For our competitive learning, we 

calculate the Euclidean distance 
of each neuron for one test input.

Self-organising maps
The training process in practice I
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• Let us look at a specific example 
where we have a 1D output map 
with 3 neurons, W1, W2 and W3.
• The corresponding weights Wij 

are initialised at random.
• We are also given a range of input 

layers that correspond to 1D 
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• Let us look at a specific example 
where we have a 1D output map 
with 3 neurons, W1, W2 and W3.
• The corresponding weights Wij 

are initialised at random.
• We are also given a range of input 

layers that correspond to 1D 
vectors with 3 entries, x1, x2, x3.
• For our competitive learning, we 

calculate the Euclidean distance 
of each neuron for one test input.

Self-organising maps
The training process in practice I
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• We have found that W2 is our winner neuron (BMU). In our case, the 
neighbourhood is simple as we only have two more neurons. However, 
in practice, we could also choose a Gaussian region around the BMU.

Self-organising maps
The training process in practice II

48



• We have found that W2 is our winner neuron (BMU). In our case, the 
neighbourhood is simple as we only have two more neurons. However, 
in practice, we could also choose a Gaussian region around the BMU.

• The update of our network weights for iteration s+1 is then as follows

   where LR is the learning rate & θ:; BMU  the neighbourhood function:

Self-organising maps
The training process in practice II

49
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• We have found that W2 is our winner neuron (BMU). In our case, the 
neighbourhood is simple as we only have two more neurons. However, 
in practice, we could also choose a Gaussian region around the BMU.

• The update of our network weights for iteration s+1 is then as follows

   where LR is the learning rate & θ:; BMU  the neighbourhood function:

Self-organising maps
The training process in practice II
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• We have found that W2 is our winner neuron (BMU). In our case, the 
neighbourhood is simple as we only have two more neurons. However, 
in practice, we could also choose a Gaussian region around the BMU.

• The update of our network weights for iteration s+1 is then as follows

   where LR is the learning rate & θ:; BMU  the neighbourhood function:

Self-organising maps
The training process in practice II
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𝐖!
"#$ = 𝐖!

" + LR" ∗ θ!" BMU ∗ 𝐱 −𝐖!
"

θ#0 BMU ∝ exp −
𝐖#

0 −𝐖123
0

2 σ0 4 σ0 = σ5	exp −
s
s$

LR0 = LR5	exp −
s
s$

The LR and the size of the neighbourhood   

σ depend on the epoch and several 

hyperparameters. Both decrease with time 

so that the map eventually converges. 



• We can illustrate this training process as follows:

Self-organising maps
Dimensionality reduction

52

Yellow neuron is the BMU 
which moves closer to the 

(white) training sample.

Credit: mcld



• We can illustrate this training process as follows:

Self-organising maps
Dimensionality reduction
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Yellow neuron is the BMU 
which moves closer to the 

(white) training sample.

Credit: mcld

Credit: https://algobeans.com/2017/11/02/self-organizing-map/



• We can illustrate this training process as follows:

Self-organising maps
Dimensionality reduction
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Yellow neuron is the BMU 
which moves closer to the 

(white) training sample.

• Ultimately, dimensionality reduction  
in SOMs depends on the distance 
measure between neurons used to 
map the input data onto the 2D plane.

Credit: mcld

Credit: https://algobeans.com/2017/11/02/self-organizing-map/



• Self-organising maps have found a wide range of applications where 
labelling data is often difficult. These include, for example,
• Image classification
• Text mining & information detection
• Anomaly detection, e.g., in banking
• Failure mode and effects analysis

• However, SOMs also have some shortcomings:
• Training SOMs takes time due to distance calculations.
• They do not build a generative data model and understand its formation.
• SOMs can be difficult to train for categorical or mixed-type data.

Self-organising maps
General applications and some disadvantages
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• Gene expression analysis
• Finding representative data in 
   large datasets
• Astronomy wide-field surveys



Self-organising maps
Two example applications
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SOM of DNA sequences of Bacteria & Archaea 
to analyse biodiversity (Weber et al. 2011)

SOM of Radio Galaxy Zoo images to identify 
spatial features (Galvin et al. 2019)



Question 
time
Mentimeter quiz

Let’s take a few minutes 
to recap what we have 
discussed so far:

Go to menti.com 
and enter the code 

3686 2739.
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Further reading
Summary of references discussed today
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Summary
• We discussed the course outline and your lecturer for this module.
• Image classification is a fundamental task in image processing, 

where we assign labels to images. This is generally simpler than 
object detection and segmentation, which we will cover next.
• Large labelled datasets like ImageNet were crucial to obtain the 

superior performance of neural networks in image classification.
• When labels are difficult to obtain or limited data is available, transfer 

learning allows us to use knowledge from previously trained models, 
because the first layers of a CNN learn generic image features.
• Additionally, self-organising maps can be used for unsupervised 

learning. Inspired by topographic maps, they allow us to reduce the 
dimensionality of complex data via a competitive learning approach.

60


