Tolg

Icat

it

Advanced Research Topics — 7PAM2016

Naive Bayes Class

Dr Vanessa Graber (based on slides by Dr William Alston)

Learning outcomes

After this lecture, you will:

« Understand generative methods for classification.

» Be able to make probabilistic classifications on data
containing two or more classes.

» Use the Nalve Bayes assumption for classification problems.

* Be able to implement this approach in Python.

Following this book:

Probabilistic Machine Learning —
Chapter 9

Kevin P. Murphy 2022

https://herts.instructure.com/course
s/103289/files/64461257module_ite
m_id=2844135

Machine Learning

A Probabilistic Perspective

Kevin P. Murphy

Introduction

Probabilistic classification
Using a Naive Bayes classifier
Research examples

Summary

Introduction

Probabilistic classification
Using a Naive Bayes classifier
Research examples

Summary

Supervised learning

Two types of approaches

In classification, the label is discrete,

while in regression, the label is continuous.

« For example, in astronomy, the task of determining whether an
object is a star, a galaxy, or a quasar is a classification
problem: the label is from three distinct categories.

* On the other hand, we might wish to estimate the age of an
object based on such observations: this would be a regression
problem, because the label (age) is a continuous quantity.

Example
of classifica-
tion: spam
detection

Input: email
Output: spam/ham
Setup:

= Get a large collection of
example emails, each

labeled “spam” or “ham”

= Note: someone has to hand
label all this data!

= Want to learn to predict
labels of new, future emails

Features: The attributes used to
make the ham / spam decision

= \Words: FREE!
= Text Patterns: $dd, CAPS
= Non-text: SenderInContacts

X

X

\

Dear Sir.

First, | must solicit your confidence in this
transaction, this is by virture of its nature
as being utterly confidencial and top
secret. ...

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, lknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, | know it was
working pre being stuck in the corner, but
when | plugged it in, hit the power nothing
happened.

Example
of classifica-
tion: hand-

written

digits

Input: images / pixel grids
Output: a digit 0-9
Setup:

= Get a large collection of example

images, each labeled with a digit
= Note: someone has to hand label all
this datal!

= Want to learn to predict labels of new,
future digit images

Features: The attributes used to make the
digit decision
= Pixels: (6,8)=ON
= Shape Patterns: NumComponents,
AspectRatio, NumLoops

??

Example
of classifica-
tion: hand-

written

digits

Benchmarking problem in image processing:

Handwritten digits classification with the MNIST
(Modified National Institute of Standards and
Technology) dataset

Other classification problems

* In classification, we predict labels, y, (our classes) for inputs, x.

* Further examples:
» Optical character recognition OCR (input: images, classes: characters)
* Medical diagnosis (input: symptoms, classes: diseases)
« Automatic essay grader (input: document, classes: grades)
» Fraud detection (input: account activity, classes: fraud / no fraud)
« Customer profile (input: browsing activity, classes: consumer type)
... Many more

Classification is an important commercial technology!

Classification concepts

« Data: labelled instances, e.g., emails marked spam/ham
« Subsets: training set, validation set, test set

» Features: attribute-value pairs which characterise each x

« Experimentation cycle:
 Learn parameters (e.g., model probabilities) on training set
e Tune hyperparameters on validation set
« Compute accuracy on the test set at the very end
« Very important: never “peek” at the test set!

» Evaluation: accuracy (fraction of instances predicted correctly)

 Overfitting and generalisation:
 Classifier should perform well on the (unseen) test data
« Qverfitting: fit training data very closely but not generalising well

Training

Validation

10

Probabilistic classification

Key idea

« Each input x is defined by a set of features x..

» Each feature x; is one (typically observed) random variable:

® ® - ®

* The class label y is a hidden random variable:

 Task: return the most likely class y* for the input item Xx:

y* = argmax, P (y [x) =argmax, P (y | X, ... xy)

What does this mean?

« For probabilistic classification, test predictions take the form of class
probabilities. This contrasts with methods which provide only a guess at
the class label. This distinction is analogous to the difference between
predictive distributions and point predictions in regression.

Since generalisation to test cases inherently involves some

level of uncertainty, it seems natural to make predictions
in a way that reflects these uncertainties.

 In a practical application, we may seek a class guess. This guess can be
obtained as the solution to a decision problem, involving the predictive
probabilities as well as a specification of the consequences of making
specific predictions (encoded in the loss function).

13

Discriminative vs generative

* The natural starting point for classification is the joint probability
P(y, X), where y denotes the class label. Using Bayes’ theorem,
this joint probability can be decomposed in the following ways:

* P(x) P(y|[x) - discriminative:

e.g., Gaussian Process classification (see lecture 6)
* P(y) P(x]y) - generative: this lecture

* The generative approach models the class-conditional distribu-
tions P(xly) fory = vy, ..., yy and the class prior probabilities P(y),
and then computes the posterior probability P(y|x) for each class
using the input prior probabilities P(x).

Returning to the key idea

* The features x; are observed random variables, while y is the
hidden random variable, we want to determine.

®»®-® O

 Task: return the most likely class y* for the input item X:

y* = argmax, P (y [x) =argmax, P (y | X, ... xy)

To perform classification, we combine a probabilistic model (you
already know how to do this kind of inference) with a decision rule
(e.g., pick the most probable hypothesis) to compute most likely y.

« We want to determine if an input x, belongs to
a class y; or y,. We first have to determine the
two conditional probabillities:

P(yj‘xl "'XN) ~ P(X{ ...XN)

* Unless we have extraordinarily large amounts
Example: of examples, we typically cannot determine
binary P(x; ... Xyly;). The problem is intractable.

classification

 However, the above equation assumes (the
most general case) that for a given label y,
the features x;depend on each other.

Naive Bayes
model

« We can significantly simplify by assuming that
features are independent given a label. Then:

P(yj|X1 - XN) = P(Xq ...XN)

P(xq ... XN)

B =1 P(xily;) P(yy) &
- P(x1 ... XN) x 1_L:1 P(Xi|yj)P(yj)

* The term in the denominator only serves to
correctly normalise the probabillities. As the
term does not depend on our class labels,
we can drop it for classification tasks.

17

General

naive Bayes
model

* The right rand side is equivalent to the joint
probability P(y, x) that we saw earlier.

* The key advantage: we only have to specify
how each feature depends on the class.

 This reduces the complexity of the problem
significantly from [y|*|x|N to N*|x|*|y|*|y/.

For a naive Bayes’ model, the total

number of parameters is linear in N.

General

naive Bayes
classifier

 To turn our probabilistic model into a classifier,
we have to add a decision rule and then return

the class label y*:

y* = argmaxy P(yj[x; ... XN)

I\
= argmaxy H__ P(xi]y;)P(yy)

1=1

To classify our data, we need to estimate

the categorical distribution P(y;) as well

as the conditional probability P(xj| y;) for
each(!) feature x,and each(!) class Y-

19

Naive Bayes:
two classes

I\

y© = argmax, 1_[1P(Xi‘yj)P(y]-)
=

e | et us assume, that we have two classes
y € {0,1}. Then, we predict that x belongs
to the class y=1, iff (it and only if):

[TiL, P(xily = DP(y = 1)

X, PGxily = OP(y = 0)

* Let us also assume that our input X is charac- terised
by Boolean features, i.e., x; € {0,1}. In this case, we
can define the probabilities:

pi = P(xi =1y =1)
(1—pi) =PE;=0]y=1)

qi = P(x; = 1|y = 0)
(1—q;) =Px; =0]y=0)

« \We can write this in a more compact form (using the
Bernoulli distribution):

Naive Bayes:
two classes

P(xily = 1) = p;*5i(1 — p))'™

P(xily = 0) = q;*i(1 — g™

21

« Combining results from previous two slides:

| < [LL, P(xily = DP(y = 1)
[T, P(xily = 0)P(y = 0)

1L, pi(1 —p)* X P(y = 1)

[T, qi%i(1 — g;)* % P(y = 0)
N p; ™

P(y=1) [1i2:(1 —pi) (—1 _lpi)

PO=0pN (1 - g (1E—iqi)Xi

Naive Bayes:
two classes

« Taking the logarithm of the last expression, we can
predict that y=1 iff:

» Naive Bayes is a linear classifier!

Naive Bayes:
a linear » The feature weight, w;, is defined as
classifier

If p, = g, then w;=0
and the feature is

irrelevant.

Learning = parameter estimation

» Classifiers based on probabilistic models such as naive Bayes
classifiers are defined by probability distributions.

In these probabilistic approaches, learning usually

means estimating the parameters of the model’s
distributions. This is typically straight forward.

* Note however that learning the underlying structure of a
probabilistic model (i.e., how different variables depend on
each other) would be a much harder task.

Supervised learning = angma, [| Plsly)Pon

* [f we have D labelled training items in our training dataset, then the
class probability can be computed as

P(y =y;) = freq(y = y;)/D

where freq(y = y;) denotes number of items with class label y;.

« Similarly, our class-conditional probabilities can be obtained as

P(x; = K|y =y;) = freq(x; = X|y = y;)/freq(y = y;)

Here, freq(x; = X|y = y;) is number of items with label y; & feature x; = &.

25

» Let's say we have a table with information on the
conditions (outlook of weather, temperature, humi-
dity, wind strength) under which we play tennis:

O T H W Play? Outlook: S(unny),
; g g g VSV : O(vercast),
R AR R(ainy)
4 g l\g IIjII x > Temperature: H(ot),
2 A + M(edium),
Example: 70 C N S + Clool)
will we play L T Humidity: H(igh
tennis CRCEEHE . i Ng)%'rr)l,al)
a7 IOR M N W + ’
today: 1S M N S + L(ow)
120 M H S + .
O AL AR Wind: S(trong),
4R M H S - W(eak)

26

Play?

« We have 4 features and produce “look-up tables” with
the probability of playing tennis for a given attribute. As
there are 9 instances of playing tennis and 5 of no tennis,
we have P(Play = Yes) = 9/14 and P(Play = No) = 5/14.

OUTLOOK Play =Yes PIay No

O O NGB~ W N K=
ROOWRARUWORRRWO®V® O

ol Aol oo Ne - NN
L 2T 2Z2Z20ZZ2o@ DT X
wnSTnnsIsITnnussITns S

r + 4+ 4+ + + 0+ 0+ 4+ 4+

Sunny (S) 2/9 5/14
10 Overcast (O) 419 0/5 4]14
Rainy (R) 3/9 2/5 5/14
Hot (H) 2/9 414
Mild (M) 4/9 2/5 6/14
Cool (C) 3/9 1/5 414
Example:
will we play High (H) 309 7114
tennis Normal (N) 6/9 1/5 714
today?
Strong (S) 3/9 6/14

Weak (W) 6/9 2/5 8/14
27

Given a new instance x = (outlook =S, temperature =C,
Example: humidity = H, wind = S) will we play tennis or not?
will we play
tennm

+ Our probabilities are

Sunny (S) 2/9 5/14
Overcast (O) 4/9 0/5 414 P(S |YeS) = 2/9 P(S | NO) = 3/5
Rainy (R) 3/9 2/5 5/14 P(C|Yes) =3/9 P(C|No) =1/s5
P(H|Yes)=3/9 P(H [No) = 4/s
Hot (H) 2/9 4114 P(S | Yes) =3/9 P(S|No) =3/5
Mild (M) 419 2/5 6/14

Cool (C) 3/9 1/5 414

P(x|Yes) P(Yes) = (2/9) * (3/9) *
High (H) 309 714 (3/9) * (3/9) * (9/14) = 0.0053

Normal (N) 6/9 1/5 7114 P(X | NO) P(NO) = (3/5) * (1/5) *
— _ RSN (415) * (315) * (5/14) = 0.0206

Weak (W) 6/9 2/5 8/14

Given a new instance x = (outlook =S, temperature =C,
Example: humidity = H, wind = S) will we play tennis or not?
will we play
tenns

+ Our probabilities are

Sunny (S) 2/9 5/14

Overcast (O) 4/9 0/5 414 R(S |Y€S) = 2/9 P(S | NO) 3/5
Rainy (R) 3/9 2/5 5/14 P(C|No)=1/g
.

Hot (H) 2/9 4114

Mild (M) 4/9 2/5 6/14
Cool (C) 3/9 1/5 414

P(x|Yes) P(Yes) = (2/9) .
High (H) 309 714 (3/9) * (3/9) * (9/14) = 0.0053

Normal (N) 6/9 1/5 7114 P(X | NO) P(NO) = (3/5) * (1/5) *
(S) Y = Play = (4/5) * (3/5) * (5/14) = 0.0206

Weak (W) 6/9 2/5 8/14

Parameter estimation

* As we just saw, we can estimate distributions of our relevant random
variables empirically using training data. For each outcome X, we
looked at the empirical rate of that value and determined its probability:

OUTLOOK Play =Yes

count(X) Sunny (S) 29

total samples Overcast(0) 4/9
Rainy (R) 3/9

P(X) =

 Alternatively, we could estimate distributions via elicitation; we involve a
human. However, this usually requires domain expertise and sophistica-
ted ways of extracting probabilities, which are often difficult to calibrate.

30

Connection to likelihood

count(X)

. . . PR) = ————————
« The empirical probability P(X) corresponds total samples

to the estimate that maximises the likelihood
of the data (for given model parameters 0):

S ~(1 _ ~(] Sunny (S) 2/9
L(@ |X) — Hlp (X() |e) —_ l_IlPe (X()) Overcast (O) 419

Rainy (R) 3/9

« Remember: The likelihood L(8|DS) is the probability of a given dataset
DS = {(xD,yD), .., (xP),y®)} (of length D) under a generative model
P(x,y|0) with model parameters 0:

L(6|DS) = [T P(x™,y™]6)

Maximum likelihood estimation (MLE)

 MLE returns the parameters 6 that assign largest likelihood to the data:

OmLe = argmaxg L(6|DS)

This should remind us of the decision rule, we introduced earlier.

e This tells us that our supervised (y=y;) =frealy =y;)/

classification approach yields _
maximum likelihood estimates! P(x; = Z|y = Yi) =

freq(x; = X|y = y;)/freq(y = ;)

“Zero-frequency” issue in MLE

« Maximum likelihood estimation assigns all probability mass to
events that occur in the training data.

o |t a particular feature value X never occurs with a particular class
label y, then the corresponding class-conditional probability
vanishes, i.e., P(X|y) = 0. In this case, we cannot make a
prediction. This is called “zero-frequency” issue.

To account for potentially unseen events, we need to

reserve some probability mass for these instances.

33

Solution: Laplace (add-one) smoothing

et us assume that each possible event occurs at least once. We
can account for that by adding 1 to the frequency of each event.

e It a feature x; has L, possible values X, there are L, different events

of freq(x; = &|y = y;) for a given class label y;. Hence, the class-
conditional probability changes as follows:

OUTLOOK Play =Yes

Sunny (S) 2/9 ->3/12

freq(xi = ')"(‘y = yj)

Overcast (O) 4/9 -> 512

freq(y = y;j) Rainy (R) 3/9 > 4/22

Pure(xi = K|y =y;) =

freq(xi =)"("y = y]-) + 1
freq(y = y;) + L;

Padd—one(xi = i‘y = y]') =

34

Hypothesis space of an NB classifier

« Each set of parameters 0
defines a different naive
Bayes classifier.

* Each set of parameters 9 is
a different hypothesis h.

* The hypothesis space enclo-
ses all models our algorithm
can learns from any dataset.

35

Using a Naive Bayes classifier

Generation of data

Generate some data
X, y = make_classification(

n_features=2, n_informative=2, n_redundant=0, class_sep=4, n_samples=1000, random_state=10
)

x[:, 0], x[:, 1] = (x[:, @] % 10).astype(int), (x[:, 1] * 10).astype(int)

80 -

[] .)a .
60 A (S,.:’O";}’..!:&.“ ‘ 3‘;(:‘,*).)'0
o 9852 sSSP
i s 05 087 @;0:¢0 0
40 ©;04%s s
See ?2_’.;",!.3 5.. ‘. ’.1:.:.:)9\3 '3,0\, o)
. - . N 20 - a%® 0" @e%”
7_NB_classifier_examples.ipynb v oo
-
for the full code for this example. =2 07 .
8 “2::0.
w —20 1 .:(«a:.’:)'.‘.,..
oAV v e?
Note that there are a few incorrect P —
0 . 0 5920
class instances in some clusters. —60 1 £ * e oo’ ® 0
. o 1
_80 i T | § T T T T T
-60 -40 =20 0 20 40 60

Feature 1
37

Classification of categorical data

 Note that our values reach into the
negative range and are numerical

rather than categorical data.

 TO circumvent this issue, we can
add a bias to our data, x, to shift
the values into the positive range.

* A more rigorous approach would
be to pre-process the data using
the LabelEncoder() feature. In this
specific case, this is equivalent.

180

160 A

140 A

=
N
o

Feature 2
=
[e7] o
o o

[«2)
o

S
o

& w ..:.
o @
.:.3.3-. Label

0

e 1

40 60 80 100 120 140 160
Feature 1

from sklearn.naive_bayes import CategoricalNB
clf = CategoricalNB()

Add bias (see text and lecture)

X_train = x_train + 100

X_test = x_test + 100

clf.fit(x_train, y_train)

38

Assessing predictions: confusion matrix (recap)

* The CM summarises the performance of a classification algorithm. It highlights the
model performance and the types of errors produced. It gives us a summary (in
tabular form) of correct and incorrect predictions broken down by each category.
Four outcomes exist:

False positives (FP): we predict an
observation belongs to a certain
class and the observation actually
does NOT belong to that class
(false alarm / type | error) .

True positives (TP): we predict an

observation belongs to a certain

class and the observation indeed
belongs to that class.

False negatives (FN): we predict True negatives (TN): we predict
an observation does NOT belong an observation does NOT belong
to a certain class, but the to a certain class, and the
observation actually belongs to observation does indeed NOT

that class (miss / type Il error). belong to that class.

39

Confusion matrix for NB classifier

use the model to predict the labels of the test data

predicted = clf.predict(x_test)
expected = y_test

* We first predict on our test set
and then compute the
confusion matrix by comparing
to the expected labels.

Print the confusion matrix

from sklearn import metrics

cm = metrics.confusion_matrix(expected, predicted)
print("Confusion matrix\n\n", cm)

print("\nTrue Positives(TP) =", cm[0, 0])
print("True Negatives(TN) = ", cm[1, 1])

» We can output the instances for

print("\nFalse Positives(FP) =", cm[0, 1])

print("False Negatives(FN) = ", cm[1, 0]) True Positives / Negatives

ontusion netrx along the diagonal and the

{ 1o 2251 False Positives / Negatives
e postees(= 2 along the off-diagonal,

False Positives(FP)

24
False Negatives(FN) 10

40

Confusion matrix for NB classifier

» Graphical representation of the confusion matrix:

Confusion matrix, without normalization

Normalized confusion matrix

200

150

True label
True label

- 100

- 50

0 1 0 1
Predicted label Predicted label

Gaussian naive Bayes

* In the previous example, we considered categorical features.
What happens if they are not categorical but continuous? We
assume a distribution for our class-conditional densities P(xi|y;).

» For a Gaussian NB classifier, this distribution is taken to be the
normal distribution. The mean and standard deviation (and the
variance) of the Gaussian are specific to x;and y;and obtained
by computing the class-conditional means and variances for y;.

» Note that we do not need AT) e
tO add a b|aS in J[h|S case. from sklearn.naive_bayes import GaussianNB

clf = GaussianNB()
clf.fit(x_train, y_train)

Confusion matrix for Gaussian NB classifier

» Graphical representation of the confusion matrix:

Confusion matrix, without normalization

Normalized confusion matrix

200

150

True label
True label

- 100

- 50

0 1 0 1
Predicted label Predicted label

Classification report

 The classification report is another way (more detailed way) to
evaluate the classification model performance. It displays the
precision, the recall, f1-score and support for the model.

print(metrics.classification_report(expected, predicted))

precision recall fl-score support

0 0.99 0.98 0.98 251

1 0.98 0.99 0.98 249
accuracy 0.98 500
macro avg 0.98 0.98 0.98 500

weighted avg 0.98 0.98 0.98 500

Example:
hand-
written
digits

* L et’s focus on our handwritten digits again.
In this case, our input are pixel grids (8x8)
that contain a certain value. The output or
label (y,) will be a digit between 0 and 9.

2

(
>
/
9

45

* et us assume the following setup:

- One feature x; for each grid position <i,j>.

» For simplicity: possible values are on (1) or
off (O) based on whether the intensity of the
underlying image is more or less than 0.5.

« Each input maps to a feature vector. E.g.,

<Xgo=0; X050, X5y =1, 4 Xg3= 1, vory X = 0>

Example: We have 64 features. Each has a binary value.

hand-
V\éri';tesn » We next apply our naive Bayes’ model:

P(Yklxom Xowr ==+ X77) X 1_[- l:)(Xij |Yk)P(YI()

L,)=

46

« What do we actually need to learn”

P
(k) P(x3; = on|yx) P(Xs5 = onlyy)
0.1 0.01 / 0.05

! 1 1
2 101 2 | 0.05 2 [0.01
3 101 3 | 0.05 3 [0.90
4 101 / 4 [0.30 4 |0.80
> |01 5 | 0.80 5 | 0.90
6 |01 6 | 0.90 6 |0.90
r 101 7 | 0.05 7 | 0.25
Example: 8 |01 8 | 0.60 8 |0.85
hand- 9 |01 9 | 0.50 9 | 0.60
written 0 |01 0 | 0.80 0 |0.80

digits

Our conditional probabilities encode how often in our

training data, we observe a given class label (digit) if
the features in a specific pixel are turned on or off.

47

e | et’s return to the MNIST dataset from earlier:

Example:
h/IPJ|E;-r from sklearn.datasets import load_digits

dataset digits = load_digits()

from matplotlib import pyplot as plt

fig = plt.figure(figsize=(6, 6)) # figure size in inches
fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05)

—
...

for i in range(64):
ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[])
ax.imshow(digits.images[il, interpolation="nearest")
label the image with the target value
ax.text(0, 7, str(digits.target[i]), color="w")

[

1
rmitn
Ed
L
5
3
L3
Ed
, "Buy

L-
—

iy
e

See 7_NB_classifier_MNIST.ipynb

"

N

o

for the full code for this example.

-

48

* \We want to train a Gaussian NB classifier to

Example: recover the digits from our images:

\ININY

dataset from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split

Split the data into training and validation sets
x_train, x_test, y_train, y_test = train_test_split(

digits.data, digits.target, test_size=0.5, random_state=0
)

Create a classifier instance and train the model

[

1
rmitn
Ed
L
5
3
L3
Ed
, "Buy

L-
—

clf = GaussianNB()
clf.fit(x_train, y_train)

iy
e

Use the model to predict the labels of the test data

predicted = clf.predict(x_test)
expected = y_test

"

N

—
:"._- .
I

49

Example:
MNIST

dataset

Label the image with the target value
if predicted[i] == expected[i]:

else:

 For test set predictions, we label images according
to whether we predict digits correctly (green) or not

(red):

ax.text(0, 7, str(predicted[il), color="green")

ax.text(@, 7, str(predicted(i]), color="red")

[
LY

b
[

2
]
&
Ed
&
3

g
ra
5
1
b
v

e Tl

i
“E e O L

5o

» To assess performance on the test set, we look
at the classification report. The averaged f1-
score is a convenient measure to analyse the
overall performance.

Example:
MNIST

dataset

from sklearn import metrics

print(metrics.classification_report(expected, predicted))

precision recall fl-score support

. 0 1.00 1.00 1.00 89

Print matches 1 0.80 0.86 0.83 90
matches = predicted == expected 2 0.91 0.57 0.70 92
print(matches.sum()) 3 0.76 0.85 0.80 93
4 0.92 0.79 0.85 76

Total number of test data points 5 0.89 0.90 0.89 108
print(len(matches)) 6 0.98 0.98 0.98 89
7 0.75 0.99 0.85 78

Fraction 8 0.61 0.84 0.70 92
9 0.92 0.60 0.72 92

print(matches.sum() / len(matches))

750 accuracy
899 macro avg

0.8342602892102335 weighted avg

51

« The confusion matrix provides insights on the
digits that are easy to identity, and which ones
are instead sometimes mistaken for others:

Confusion matrix, without normalization

0 0 0 0 0 0 0 0 0 0
14 0 2 0 0 0 0 0 8 3
80

Example:
YININYS
dataset

True label

- 40

- 20

Predicted label
52

Example:
text
classification

* NB classifiers can also be used to process
text. Let us assume we want to assign a sen-
timent label L; € {positive(+), negative(—)} to
a document or text W..

* Imagine we have two examples:

W, ="This is an amazing product: great
battery life, amazing features and it's cheap.”

W, = "How awful. It's buggy, saps power
and is way too expensive.”

53

W, = "This is an
amazing product:
great battery life,

amazing features and
it's cheap.”

W, = "How awful. It's
buggy, saps power and
Is way too expensive.”

Example:
Bernoulli
naive Bayes

« We can, for example, imagine two ditferent
approaches to process the given words.

* The first one relies on Bernoulli’s distribution
and counts if words are present or not:

Assume W;is a bit vector:
W= {amazing:1, awful:o battery:1, buggy:o... }
W,= {amazing:o, awful:1,battery:o, buggy:1...}

P(W; | L) is a Bernoulli distribution
W, ~ Bernoulli(0,)

P(L) is a Bernoulli distribution: L ~ Bernoulli(n)

54

W, = "This is an
amazing product:
great battery life,

amazing features and
it's cheap.”

W, = "How awful. It's
buggy, saps power and
Is way too expensive.”

Example:
multi-nomial
naive Bayes

* The second approach relies on the muilti-
nomial distribution (generalisation of the bi-
nomial distribution). It counts word instances:

Assume W;is a “bag of words”:
W= {amazing: 2, battery: 1, cheap: 1, features: 1}
W= {awful: 1, buggy: 1, expensive: 1,...}

P(W. | L) is a multinomial distribution:

W, ~ Multinomial(0,)

We have a vocabulary of Vwords: 6, = (0,,...., 6,)
P(L) is a Bernoulli distribution: L ~ Bernoulli(s)

55

Overfitting |

* This is a key issue for ML models. The classifier performs well on
training data but does not generalise well to unseen test data.

* et us look at an example how this could happen for our hand-
written digit problem. As before, we determine our probabilities:

P(features,Y = 2)
P(Y =2)=0.1
P(only =2) =0.8
P(only =2)=0.1
P(offly =2) =0.1

P(on|Y =2) =0.01

P(features,Y = 3)
P(Y =3)=0.1
P(onlyY =3) =0.8
P(only =3)=0.9
P(offly =3) =0.7

P(onlyY =3) =0.0

Multiplying the
probabilities,

we find that
this would be
classified as a 2.

56

Overfitting |

* This is a key issue for ML models. The classifier performs well on
training data gut does not generalise well to unseen test data.

e | et us look
written digi

P(features,Y = 2)

)lying the

»abilities,
we find that
this would be

P(Y =2)=0.1

P(onlyY =3) =0.8

P(only =2) =0.8

P(only =2) =0.1 P(on|yY =3)=0.9

P(offly =2) =0.1 P(offly =3) =0.7

classified as a 2.

P(onlY =2) =0.01 P(only =3) =0.0

57

Overfitting |l

* Whenever relative frequencies are involved, we overfit training data.

 Just because we did not see a 3 with pixel (7,7) activated during training,
this does not necessarily have to hold all the time.

« Similarly, in text recognition (e.g., spam filters) a single word such as “offer”
does not always lead to spam. What about words not in the training data”

« We cannot give unseen events zero probability.

* Imagine the extreme case of using an entire email text as the only
feature. The training would result in perfect performance, while
generalisation capabillities would not be available at all.

Making, e.g., a "bag-of-words” assumption helps BUT isn’t generally

enough. That's why we need to smooth or reqularise our data.

Learning in practice |

 For our naive Bayes’ approach, we have two kinds of unknowns:

* the parameters we want to estimate, i.e., the probabilities P(y), P(y|x).
 the hyperparameters (e.g., amount of smoothing) we need to tune.

* How do we learn these two types of unknowns?

« We learn the parameters from the training data.
« We must tune the hyperparameters on different data.

* For each set of hyperparameters, we first train on the
training data and then validate on the validation set.

« We choose the best configuration for a final test on
the test dataset.

accuracy

training

validation
test

«

59

Learning in practice |l

* The first step is generally to produce a baseline using a very
simple classifier. This determines how hard the task is and
establish what a “good” accuracy for the problem at hand is.

* A weak baseline would be one that classifies everything
according to the most frequent label. |.e., all test labels are
“‘ham” for a spam filter because that was most common in the
training data. Accuracies could be high if the problem is skewed.

In research settings, we usually use previous works as a (strong)

baseline. l.e., we want to do better than earlier studies.

Classifier confidences

* Any probabilistic classifier (such as NB) can be assigned a confi-
dence. It is given by the posterior of the most probable label y*:

confidence(x) = max,P(x|y)

* This information encodes how sure a classifier is of its predicted label.
Note, there is no guarantee that this confidence is correct!

« To mitigate this, we can calibrate classifiers. N]
« Weak calibration: higher confidence

results in higher accuracy. mll | M

« Strong calibration: confidence predicts P(y|x) P(y|z)
accuracy rate.

accuracy
accuracy

61

Advantages of a NB classifier

* Now that we have discussed the theory behind a naive Bayes
classifier and seen several examples, let's summarise some key
advantages:

It is simple and easy to implement.
It does not require as much training data as other classifiers.
It handles both continuous and discrete data.

It is highly scalable with number of classes and data points.
It is fast and can be used to make real-time predictions.
It is not sensitive to irrelevant features.

Disadvantages of a NB classifier

* On the other hand, some disadvantages of this approach are:

NB classifiers require the removal of correlated features as they are
voted twice in the model, which over inflates their importance.

If a categorical variable has a category in the test set, which was not
observed in the training data, then the model will assign a zero
probability. |.e., the classifier is unable to make a prediction, which is
known as the “zero-frequency” problem.

* We can solve the last issue by smoothing the data. One of the simplest
techniques is the Laplace (or add-one) smoothing that we saw earlier.
* Note: sklearn applies Laplace smoothing by default for NB classifiers.

Applications

» Real-time prediction: NB classifiers are supertfast. Thus, they can be be
used for making predictions in real time such as weather forecasting.

« Multi-class prediction: NB classitiers allow us to predict the probability of
multiple classes of target variables, not just one.

 Text classification / spam filtering / sentiment analysis: NB classifiers
are mostly used for text classification (due to better result in multi-class
problems) as they have higher success rates than other algorithms. Thus,
they are widely used in spam filters or sentiment analysis (e.g., in social
media settings or to identify positive/negative customer sentiments).

« Recommendation systems: NB classifiers are key for recommendation
system to filter unseen information and predict whether a user would like a
given resource or not.

Research examples

Predicting disease

J Am Med Inform Assoc. 2011 Jul-Aug; 18(4): 370-375. PMCID: PMC3128400 1
doi: 10.1136/amiajnl-2011-000101 PMID: 21672907

0.9
The application of naive Bayes model averaging to predict Alzheimer's disease from -
genome-wide data

0.7

Wei Wei,® Shyam Visweswaran,!? and Gregory F Cooper'2

o
o

sSensiuvity (1PK)
o

A feature-selection naive Bayes algorithm =4
In the experiments reported below, we also applied a version of NB that selects the features to include in 9:3
the model (FSNB). In particular, we started with the model with no features. We then used a forward

stepping greedy search that added the feature to the current model that most increased the score. If no Nt
additional feature increased the score, the search stopped. We scored models using the conditional marginal

likelihood method described in Kontkanen et al,2> combined with a binomial structure prior, which is #e
described below. This method tries to locate the smallest set of features that predict the target variable well. o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1-specificity (FPR)
[®m NB (AUC = 0.5935) ® FSNB (AUC = 0.7117) A MANB (AUC = 0.7226)

66

Predicting astronomical sources

_— e L : P(AGN)L(AGN|D
Probabilistic classification of X-ray sources applied to P(AGN|D) = p(AGN)E(A(GNw))ip(slar))ﬁ(sm,ﬂw)

Swift-XRT and XMM-Newton catalogs

Hugo Tranin®2, Olivier Godet?, Natalie Webb? and Daria Primorac? 4

0.6 d{\CN (50°)dACN, (-3)
0.6 7'M (50°)dCN, (=3) + 0.4 dyten(50°)d3ter,, (—3)

Fx /F,
~ 15%,
2SXPS_ID = 873 (AGN classified as XRB)
10°7 o e o ® 4 o —_—
06008 20001 3 AGN
w1]] ¢ ' o - Star
$. Y 0.6 -
1072 ; o —— XRB
>
. -3] @ o
= 10 ®
8 -4
g 10 0.5 arcmin 0.4 1
1077 { e AGN
i Star
10 e XRB
10_7 ® cv 0-2 T
PULEELEDT XELN ®EES >
EJIGXEIEEERESOE
- S o xXx T 4 Em g 52
2O g o% < i @ U g 2
a2 e o ac ® 0 L3 vt
e o S o E F3 w20 0.0 T
Q'S o w ° o - .
- [- O a S o 8
T e ® 9 ° s 2 arcmin
g 2 & 2 -
& 2 g - logFxFr

67

Covid-19 risk prediction

Volume 62, Part 7, 2022, Pages 4795-4799

Towards applying internet of things and S RiESHIES RIIEL GISERESIon
machine learning fOr the risk prediction Of RF algorithm and the NB algorithm are used for prediction of covid 19 diseases using

parameters by the process of classification. The accuracy of classification of the former is
COVID-19 1n pandemlc Situation using Nailve 97% whereas the latter takes the accuracy of 99% (Fig. 2). The real time data is gathered

G 755 o : fi lyzing th fi f RF and NB.
Bayes classifier for improving accuracy OF andlyEng Te perioTmaneE o T A
N.Deepa® O i). Sathya Priya®, DeviT. Accuracy Prediction of NB Vs RF
99.5
_ 99
F | %98.5
/—\ Random Forest £ 98
P $ o075
—~ 97 .
a Naive Bayes _ -—
Classificati »
S \ R / Naive Bayes Random Forest
‘ Classifiers
Data
Collection
K-Means algorithm
: Note: starting the y-axis at a non-zero value can be misleading.
Clustering Often used in media / politics to overstate a difference.
Data
Processing

68

Introduction

Probabilistic classification
Using a Naive Bayes classifier
Research examples

Summary

Summary

* Bayes' rule lets us do diagnostic queries with causal probabillities.

« Key assumption of naive Bayes: all features are independent
given the class label.

» We can build classifiers out of a naive Bayes’ models when
combined with a decision rule and training data is available.

» Due to their many advantages, they are widely used for
classification tasks across a range of disciplines.

