
Naïve Bayes Classification
Advanced Research Topics – 7PAM2016

Dr Vanessa Graber (based on slides by Dr William Alston)



• Understand generative methods for classification.

• Be able to make probabilistic classifications on data 
containing two or more classes.

• Use the Naïve Bayes assumption for classification problems.

• Be able to implement this approach in Python.
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Learning outcomes
After this lecture, you will:



Following this book:

Probabilistic Machine Learning – 
Chapter 9

Kevin P. Murphy 2022

https://herts.instructure.com/course
s/103289/files/6446125?module_ite
m_id=2844135
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• For example, in astronomy, the task of determining whether an 
object is a star, a galaxy, or a quasar is a classification 
problem: the label is from three distinct categories.

• On the other hand, we might wish to estimate the age of an 
object based on such observations: this would be a regression 
problem, because the label (age) is a continuous quantity.

5

Supervised learning
Two types of approaches

In classification, the label is discrete, 
while in regression, the label is continuous.
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Example     
of classifica-
tion: spam 
detection
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Example     
of classifica-
tion: hand-

written 
digits
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Example     
of classifica-
tion: hand-

written 
digits

Benchmarking problem in image processing:
Handwritten digits classification with the MNIST 

(Modified National Institute of Standards and 
Technology) dataset



Other classification problems
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• In classification, we predict labels, y, (our classes) for inputs, x.

• Further examples:
• Optical character recognition OCR (input: images, classes: characters)
• Medical diagnosis (input: symptoms, classes: diseases)
• Automatic essay grader (input: document, classes: grades)
• Fraud detection (input: account activity, classes: fraud / no fraud)
• Customer profile (input: browsing activity, classes: consumer type)
• … many more

Classification is an important commercial technology!



Classification concepts
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• Data: labelled instances, e.g., emails marked spam/ham
• Subsets: training set, validation set, test set

• Features: attribute-value pairs which characterise each x
• Experimentation cycle:

• Learn parameters (e.g., model probabilities) on training set
• Tune hyperparameters on validation set
• Compute accuracy on the test set at the very end
• Very important: never “peek” at the test set!

• Evaluation: accuracy (fraction of instances predicted correctly)
• Overfitting and generalisation:

• Classifier should perform well on the (unseen) test data
• Overfitting: fit training data very closely but not generalising well

Training

Validation

Test
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Key idea
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• Each input x is defined by a set of features xi.

• Each feature xi is one (typically observed) random variable:

• The class label y is a hidden random variable:

• Task: return the most likely class y* for the input item x:

y* = argmaxy P (y | x) = argmaxy P (y | x1 … xN)  



What does this mean?
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• For probabilistic classification, test predictions take the form of class 
probabilities. This contrasts with methods which provide only a guess at 
the class label. This distinction is analogous to the difference between 
predictive distributions and point predictions in regression. 

• In a practical application, we may seek a class guess. This guess can be 
obtained as the solution to a decision problem, involving the predictive 
probabilities as well as a specification of the consequences of making 
specific predictions (encoded in the loss function).

Since generalisation to test cases inherently involves some 
level of uncertainty, it seems natural to make predictions 

in a way that reflects these uncertainties. 



Discriminative vs generative
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• The natural starting point for classification is the joint probability 
P(y, x), where y denotes the class label. Using Bayes’ theorem,   
this joint probability can be decomposed in the following ways:

• The generative approach models the class-conditional distribu-
tions P(x|y) for y = y1, . . . , yM  and the class prior probabilities P(y), 
and then computes the posterior probability P(y|x) for each class 
using the input prior probabilities P(x).

• P(x) P(y|x) - discriminative:
e.g., Gaussian Process classification (see lecture 6)

• P(y) P(x|y) - generative: this lecture



Returning to the key idea
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• The features xi are observed random variables, while y is the 
hidden random variable, we want to determine.

• Task: return the most likely class y* for the input item x:

y* = argmaxy P (y | x) = argmaxy P (y | x1 … xN)  

To perform classification, we combine a probabilistic model (you 
already know how to do this kind of inference) with a decision rule 

(e.g., pick the most probable hypothesis)  to compute most likely y.



Example: 
binary 

classification

16

• We want to determine if an input x, belongs to 
a class y1 or y2. We first have to determine the 
two conditional probabilities:

• Unless we have extraordinarily large amounts 
of examples, we typically cannot determine 
P(x1 … xN|yj). The problem is intractable.

• However, the above equation assumes (the 
most general case) that for a given label yj    
the features xi depend on each other.

P y! x"…x# =
P x"…x# y! P(y!)

P(x"…x#)

x

y1
y2

? 



Naïve Bayes 
model
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• We can significantly simplify by assuming that 
features are independent given a label. Then:

• The term in the denominator only serves to 
correctly normalise the probabilities. As the 
term does not depend on our class labels,     
we can drop it for classification tasks.

P y! x"…x# =
P x"…x# y! P(y!)

P(x"…x#)

=
P x" y! … 	P x# y! P(y!)

P(x"…	x#)

=
∏$%"
& P x' y! P(y!)
P(x"…	x#)

∝+
$%"

&
P x' y! P(y!)

y1
y2

x

? 



General 
naïve Bayes 

model
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• The right rand side is equivalent to the joint 
probability P(y, x) that we saw earlier.

• The key advantage: we only have to specify 
how each feature depends on the class.

• This reduces the complexity of the problem 
significantly from |y|*|x|N to N*|x|*|y|*|y|.

P y! x"…x# ∝&
$%"

&
P x' y! P(y!)

= P(y!, x"…x#)y1
y2

yM

…
 

For a naïve Bayes’ model, the total 
number of parameters is linear in N.

x

? 



General 
naïve Bayes 

classifier
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• To turn our probabilistic model into a classifier, 
we have to add a decision rule and then return 
the class label y*:y1

y2

yM

…
 

To classify our data, we need to estimate 
the categorical distribution P(yj) as well 

as the conditional probability  P(xi| yj) for 
each(!) feature xi and each(!) class yj.  

x

? 

y∗ = argmax)	P(y!|x"…x#)

= argmax) 	&
'%"

#
P x' y! P(y!)



Naïve Bayes:
two classes
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• Let us assume, that we have two classes  
y ∈ 0,1 . Then, we predict that x belongs   
to the class y=1, iff (if and only if):

0
1

x

? 

y∗ = argmax) 	&
'%"

#
P x' y! P(y!)

∏'%"
# P x' y = 1 P(y = 1) 	

∏'%"
# P x' y = 0 P(y = 0) 	

> 1



Naïve Bayes:
two classes
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• Let us also assume that our input x is charac- terised 
by Boolean features, i.e., x' ∈ 0,1 . In this case, we 
can define the probabilities:

• We can write this in a more compact form (using the 
Bernoulli distribution):

0
1

x

? p' ≡ P(x' = 1|y = 1)
(1 − p') = P(x' = 0|y = 1)

q' ≡ P(x' = 1|y = 0)
(1 − q') = P(x' = 0|y = 0)

P x' y = 1 = p'(!(1 − p')")(!

P x' y = 0 = q'(!(1 − q')")(!



Naïve Bayes:
two classes
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• Combining results from previous two slides:

0
1

x

? 1 <
∏'%"
# P x' y = 1 P(y = 1) 	

∏'%"
# P x' y = 0 P(y = 0) 	

	 =
∏'%"
# p'*!(1 − p')"+*! 	P(y = 1) 	

∏'%"
# q'*!(1 − q')"+*! 	P(y = 0) 	

	 =
P(y = 1)
P(y = 0)

∏'%"
# (1 − p')

p'
1 − p'

*!
	

∏'%"
# (1 − q')

q'
1 − q'

*!
	



Naïve Bayes:
a linear 

classifier
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• Taking the logarithm of the last expression, we can 
predict that y=1 iff:

• Naïve Bayes is a linear classifier!

• The feature weight, wi, is defined as

0
1

x

? 
log

P(y = 1)
P(y = 0)

+,
"#$

%

log
1 − p"
1 − q"

+,
"#$

%

x" log
p"

1 − p"
− log

q"
1 − q"

> 0

w' ≡ log *!
")*!

− log +!
")+!

	 = log
p'
q'
1 − q'
1 − p'

If pi = qi then wi=0 
and the feature is 

irrelevant.



Learning = parameter estimation
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• Classifiers based on probabilistic models such as naïve Bayes 
classifiers are defined by probability distributions.

• Note however that learning the underlying structure of a 
probabilistic model (i.e., how different variables depend on 
each other) would be a much harder task. 

In these probabilistic approaches, learning usually 
means estimating the parameters of the model’s 

distributions. This is typically straight forward.



Supervised learning
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• If we have D labelled training items in our training dataset, then the 
class probability can be computed as 

   where freq(y = y!) denotes number of items with class label yj. 

• Similarly, our class-conditional probabilities can be obtained as

 Here, freq x' = ;x y = y! 	is number of items with label yj & feature x' = ;x.

P(y = y!) = freq(y = y!)/D

P x' = ;x y = y! = freq x' = ;x y = y! /freq(y = y!)

y∗ = argmax" 	4
#$%

&
P x# y' P(y')



Example: 
will we play 

tennis 
today?

• Let’s say we have a table with information on the 
conditions (outlook of weather, temperature, humi-
dity, wind strength) under which we play tennis:

26



Example: 
will we play 

tennis 
today?

• We have 4 features and produce “look-up tables” with 
the probability of playing tennis for a given attribute. As 
there are 9 instances of playing tennis and 5 of no tennis, 
we have P(Play = Yes) = 9/14 and P(Play = No) = 5/14.

27

OUTLOOK Play = Yes Play = No Total

Sunny (S) 2/9 3/5 5/14

Overcast (O) 4/9 0/5 4/14

Rainy (R) 3/9 2/5 5/14

TEMP Play = Yes Play = No Total

Hot (H) 2/9 2/5 4/14

Mild (M) 4/9 2/5 6/14

Cool (C) 3/9 1/5 4/14

HUMIDITY Play = Yes Play = No Total

High (H) 3/9 4/5 7/14

Normal (N) 6/9 1/5 7/14

WIND Play = Yes Play = No Total

Strong (S) 3/9 3/5 6/14

Weak (W) 6/9 2/5 8/14



• Our probabilities are
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Example: 
will we play 

tennis 
today?

TEMP Play = Yes Play = No Total

Hot (H) 2/9 2/5 4/14

Mild (M) 4/9 2/5 6/14

Cool (C) 3/9 1/5 4/14

HUMIDITY Play = Yes Play = No Total

High (H) 3/9 4/5 7/14

Normal (N) 6/9 1/5 7/14

WIND Play = Yes Play = No Total

Strong (S) 3/9 3/5 6/14

Weak (W) 6/9 2/5 8/14

OUTLOOK Play = Yes Play = No Total

Sunny (S) 2/9 3/5 5/14

Overcast (O) 4/9 0/5 4/14

Rainy (R) 3/9 2/5 5/14

Given a new instance x = (outlook = S, temperature = C, 
humidity = H, wind = S) will we play tennis or not?

P(S | Yes) = 2/9 P(S | No) = 3/5
P(C | Yes) = 3/9 P(C | No) = 1/5
P(H | Yes) = 3/9 P(H | No) = 4/5
P(S | Yes) = 3/9 P(S | No) = 3/5

P(x | Yes) P(Yes) = (2/9) * (3/9) * 
(3/9) * (3/9) * (9/14) = 0.0053

P(x | No) P(No) = (3/5) * (1/5) * 
(4/5) * (3/5) * (5/14) = 0.0206



• Our probabilities are
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Example: 
will we play 

tennis 
today?

TEMP Play = Yes Play = No Total

Hot (H) 2/9 2/5 4/14

Mild (M) 4/9 2/5 6/14

Cool (C) 3/9 1/5 4/14

HUMIDITY Play = Yes Play = No Total

High (H) 3/9 4/5 7/14

Normal (N) 6/9 1/5 7/14

WIND Play = Yes Play = No Total

Strong (S) 3/9 3/5 6/14

Weak (W) 6/9 2/5 8/14

OUTLOOK Play = Yes Play = No Total

Sunny (S) 2/9 3/5 5/14

Overcast (O) 4/9 0/5 4/14

Rainy (R) 3/9 2/5 5/14

Given a new instance x = (outlook = S, temperature = C, 
humidity = H, wind = S) will we play tennis or not?

P(S | Yes) = 2/9 P(S | No) = 3/5
P(C | Yes) = 3/9 P(C | No) = 1/5
P(H | Yes) = 3/9 P(H | No) = 4/5
P(S | Yes) = 3/9 P(S | No) = 3/5

P(x | Yes) P(Yes) = (2/9) * (3/9) * 
(3/9) * (3/9) * (9/14) = 0.0053

P(x | No) P(No) = (3/5) * (1/5) * 
(4/5) * (3/5) * (5/14) = 0.0206

WE ARE NOT PLAYING TENNIS TODAY!



Parameter estimation
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• As we just saw, we can estimate distributions of our relevant random 
variables empirically using training data. For each outcome ;x, we 
looked at the empirical rate of that value and determined its probability:

• Alternatively, we could estimate distributions via elicitation; we involve a 
human. However, this usually requires domain expertise and sophistica-
ted ways of extracting probabilities, which are often difficult to calibrate.

P :x =
count(:x)

total	samples

OUTLOOK Play = Yes

Sunny (S) 2/9

Overcast (O) 4/9

Rainy (R) 3/9



Connection to likelihood
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• The empirical probability P ,x 	corresponds            
to the estimate that maximises the likelihood             
of the data (for given model parameters θ):

• Remember: The likelihood L(θ|DS) is the probability of a given dataset 
DS = 𝐱("), y(") , … , 𝐱(8), y(8)  (of length D) under a generative model 
P(𝐱, y θ 	with model parameters θ:

P :x =
count(:x)

total	samples

L θ|,x =1
$
𝑃(,x($)|θ) ≡1

$
P'(,x($))

L θ|DS = ∏(
) P( 𝐱((), y(()|θ)

OUTLOOK Play = Yes

Sunny (S) 2/9

Overcast (O) 4/9

Rainy (R) 3/9



Maximum likelihood estimation (MLE)

32

• MLE returns the parameters θ that assign largest likelihood to the data:

• This tells us that our supervised                    
classification approach yields                   
maximum likelihood estimates!

θ*+, = argmax' L θ|DS  

This should remind us of the decision rule, we introduced earlier.

P(y = y!) = freq(y = y!)/D

P x' = :x y = y! =
freq x' = :x y = y! /freq(y = y!)



“Zero-frequency” issue in MLE
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• Maximum likelihood estimation assigns all probability mass to 
events that occur in the training data.

• If a particular feature value ,x never occurs with a particular class 
label y, then the corresponding class-conditional probability 
vanishes, i.e., P ,x|𝑦 = 0. In this case, we cannot make a 
prediction. This is called “zero-frequency” issue.

To account for potentially unseen events, we need to 
reserve some probability mass for these instances.



Solution: Laplace (add-one) smoothing
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• Let us assume that each possible event occurs at least once. We 
can account for that by adding 1 to the frequency of each event.

• If a feature xi has Li possible values ,x, there are Li different events 
of freq x- = ,x y = y!  for a given class label yj. Hence, the class-
conditional probability changes as follows:

P,-. x' = ;x y = y! =
freq x' = ;x y = y!

freq(y = y!)

P/00+123 x' = ;x y = y! =
freq x' = ;x y = y! + 1

freq(y = y!)	+	L'

OUTLOOK Play = Yes

Sunny (S) 2/9 -> 3/12

Overcast (O) 4/9 -> 5/12

Rainy (R) 3/9 -> 4/12



Hypothesis space of an NB classifier
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• Each set of parameters θ 
defines a different naïve 
Bayes classifier. 

• Each set of parameters θ is  
a different hypothesis h.

• The hypothesis space enclo-
ses all models our algorithm 
can learns from any dataset.
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Generation of data

See 
7_NB_classifier_examples.ipynb 
for the full code for this example.

Note that there are a few incorrect 
class instances in some clusters.



Classification of categorical data
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• Note that our values reach into the 
negative range and are numerical 
rather than categorical data.

• To circumvent this issue, we can 
add a bias to our data, x, to shift 
the values into the positive range.

• A more rigorous approach would 
be to pre-process the data using 
the LabelEncoder() feature. In this 
specific case, this is equivalent.



Assessing predictions: confusion matrix (recap)
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• The CM summarises the performance of a classification algorithm. It highlights the 
model performance and the types of errors produced. It gives us a summary (in 
tabular form) of correct and incorrect predictions broken down by each category. 
Four outcomes exist:

True positives (TP): we predict an 
observation belongs to a certain 
class and the observation indeed 

belongs to that class.

True negatives (TN): we predict 
an observation does NOT belong 

to a certain class, and the 
observation does indeed NOT 

belong to that class.

False positives (FP): we predict an 
observation belongs to a certain 

class and the observation actually 
does NOT belong to that class 

(false alarm / type I error) .

False negatives (FN): we predict 
an observation does NOT belong 

to a certain class, but the 
observation actually belongs to 
that class (miss / type II error).



Confusion matrix for NB classifier
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• We first predict on our test set 
and then compute the 
confusion matrix by comparing 
to the expected labels.

• We can output the instances for 
True Positives / Negatives 
along the diagonal and the 
False Positives / Negatives 
along the off-diagonal.



Confusion matrix for NB classifier

41

• Graphical representation of the confusion matrix:



• In the previous example, we considered categorical features. 
What happens if they are not categorical but continuous? We 
assume a distribution for our class-conditional densities P(xi|yj).

• For a Gaussian NB classifier, this distribution is taken to be the 
normal distribution. The mean and standard deviation (and the 
variance) of the Gaussian are specific to xi and yj and obtained 
by computing the class-conditional means and variances for yj.

• Note that we do not need           
to add a bias in this case.

Gaussian naïve Bayes

42



Confusion matrix for Gaussian NB classifier
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• Graphical representation of the confusion matrix:



Classification report
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• The classification report is another way (more detailed way) to 
evaluate the classification model performance. It displays the 
precision, the recall, f1-score and support for the model.



Example: 
hand-

written 
digits

• Let’s focus on our handwritten digits again. 
In this case, our input are pixel grids (8x8) 
that contain a certain value. The output or 
label (yk) will be a digit between 0 and 9.

45



Example: 
hand-

written 
digits

46

• Let us assume the following setup:
• One feature xij for each grid position <i,j>.
• For simplicity: possible values are on (1) or     

off (0) based on whether the intensity of the 
underlying image is more or less than 0.5.
• Each input maps to a feature vector. E.g.,

  We have 64 features. Each has a binary value.

• We next apply our naïve Bayes’ model:

< x00 = 0, x01 = 0 , x02 = 1, , x03 = 1, …, x77 = 0>

P y9 x00, x01, …, x77 ∝+
',!%"

P x'! y9 P(y9)



Example: 
hand-

written 
digits

47

• What do we actually need to learn?
P(y() P(x)% = on|y() P(x** = on|y()

Our conditional probabilities encode how often in our 
training data, we observe a given class label (digit) if 

the features in a specific pixel are turned on or off.



Example: 
MNIST 
dataset
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• Let’s return to the MNIST dataset from earlier:

See 7_NB_classifier_MNIST.ipynb 
for the full code for this example.



Example: 
MNIST 
dataset
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• We want to train a Gaussian NB classifier to 
recover the digits from our images:



Example: 
MNIST 
dataset
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• For test set predictions, we label images according 
to whether we predict digits correctly (green) or not 
(red):



Example: 
MNIST 
dataset
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• To assess performance on the test set, we look 
at the classification report. The averaged f1-
score is a convenient measure to analyse the 
overall performance.
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• The confusion matrix provides insights on the 
digits that are easy to identify, and which ones 
are instead sometimes mistaken for others:

Example: 
MNIST 
dataset



Example: 
text 

classification
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• NB classifiers can also be used to process 
text. Let us assume we want to assign a sen-
timent label L- ∈ {positive + , negative − } to 
a document or text Wi.

• Imagine we have two examples:

W1 = “This is an amazing product: great 
battery life, amazing features and it’s cheap.” 

W2 = “How awful. It’s buggy, saps power       
and is way too expensive.” 



Example: 
Bernoulli 

naïve Bayes

54

• We can, for example, imagine two different 
approaches to process the given words.

• The first one relies on Bernoulli’s distribution 
and counts if words are present or not:

W1 = “This is an 
amazing product: 
great battery life, 

amazing features and 
it’s cheap.” 

W2 = “How awful. It’s 
buggy, saps power and 
is way too expensive.” 



Example: 
multi-nomial 
naïve Bayes

55

• The second approach relies on the multi-
nomial distribution (generalisation of the bi-
nomial distribution). It counts word instances:

W1 = “This is an 
amazing product: 
great battery life, 

amazing features and 
it’s cheap.” 

W2 = “How awful. It’s 
buggy, saps power and 
is way too expensive.” 



Overfitting I
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• This is a key issue for ML models. The classifier performs well on 
training data but does not generalise well to unseen test data.

• Let us look at an example how this could happen for our hand-
written digit problem. As before, we determine our probabilities:

Multiplying the 
probabilities, 
we find that 

this would be 
classified as a 2.



Overfitting I
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• This is a key issue for ML models. The classifier performs well on 
training data but does not generalise well to unseen test data.

• Let us look at an example how this could happen for our hand-
written digit problem. As before, we determine our probabilities:

Multiplying the 
probabilities, 
we find that 

this would be 
classified as a 2.

Problematic as our posteriors are determined 

by relative probabilities (odds ratios)!



Overfitting II
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• Whenever relative frequencies are involved, we overfit training data.
• Just because we did not see a 3 with pixel (7,7) activated during training, 

this does not necessarily have to hold all the time.
• Similarly, in text recognition (e.g., spam filters) a single word such as “offer” 

does not always lead to spam. What about words not in the training data?
• We cannot give unseen events zero probability.

• Imagine the extreme case of using an entire email text as the only 
feature. The training would result in perfect performance, while 
generalisation capabilities would not be available at all.

Making, e.g., a “bag-of-words” assumption helps BUT isn’t generally 
enough. That’s why we need to smooth or regularise our data.



Learning in practice I

59

• For our naïve Bayes’ approach, we have two kinds of unknowns:
• the parameters we want to estimate, i.e., the probabilities P(y), P(y|x).
• the hyperparameters (e.g., amount of smoothing) we need to tune.

• How do we learn these two types of unknowns?
• We learn the parameters from the training data.
• We must tune the hyperparameters on different data.
• For each set of hyperparameters, we first train on the          

training data and then validate on the validation set.
• We choose the best configuration for a final test on      

the test dataset.

validation
test

training



Learning in practice II
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• The first step is generally to produce a baseline using a very 
simple classifier. This determines how hard the task is and 
establish what a “good” accuracy for the problem at hand is.

• A weak baseline would be one that classifies everything 
according to the most frequent label. I.e., all test labels are 
“ham” for a spam filter because that was most common in the 
training data. Accuracies could be high if the problem is skewed.

In research settings, we usually use previous works as a (strong) 
baseline. I.e., we want to do better than earlier studies.



Classifier confidences
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• Any probabilistic classifier (such as NB) can be assigned a confi-
dence. It is given by the posterior of the most probable label y*:

• This information encodes how sure a classifier is of its predicted label. 
Note, there is no guarantee that this confidence is correct!

• To mitigate this, we can calibrate classifiers. 
• Weak calibration: higher confidence            

results in higher accuracy. 
• Strong calibration: confidence predicts         

accuracy rate.

conIidence(x) = max>P x y



Advantages of a NB classifier

• Now that we have discussed the theory behind a naïve Bayes 
classifier and seen several examples, let’s summarise some key 
advantages:

62

• It is simple and easy to implement.
• It does not require as much training data as other classifiers.
• It handles both continuous and discrete data.
• It is highly scalable with number of classes and data points.
• It is fast and can be used to make real-time predictions.
• It is not sensitive to irrelevant features.



Disadvantages of a NB classifier

• On the other hand, some disadvantages of this approach are:
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• NB classifiers require the removal of correlated features as they are 
voted twice in the model, which over inflates their importance.

• If a categorical variable has a category in the test set, which was not 
observed in the training data, then the model will assign a zero 
probability. I.e., the classifier is unable to make a prediction, which is 
known as the “zero-frequency” problem. 

• We can solve the last issue by smoothing the data. One of the simplest 
techniques is the Laplace (or add-one) smoothing that we saw earlier.

• Note: sklearn applies Laplace smoothing by default for NB classifiers.



Applications

• Real-time prediction: NB classifiers are superfast. Thus, they can be be 
used for making predictions in real time such as weather forecasting.

• Multi-class prediction: NB classifiers allow us to predict the probability of 
multiple classes of target variables, not just one.

• Text classification / spam filtering / sentiment analysis: NB classifiers 
are mostly used for text classification (due to better result in multi-class 
problems) as they have higher success rates than other algorithms. Thus, 
they are widely used in spam filters or sentiment analysis (e.g., in social 
media settings or to identify positive/negative customer sentiments).

• Recommendation systems: NB classifiers are key for recommendation 
system to filter unseen information and predict whether a user would like a 
given resource or not.
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Predicting disease
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Predicting astronomical sources

67



Covid-19 risk prediction

Note: starting the y-axis at a non-zero value can be misleading.
Often used in media / politics to overstate a difference.
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Summary

• Bayes’ rule lets us do diagnostic queries with causal probabilities. 

• Key assumption of naïve Bayes: all features are independent 
given the class label.

• We can build classifiers out of a naïve Bayes’ models when 
combined with a decision rule and training data is available. 

• Due to their many advantages, they are widely used for 
classification tasks across a range of disciplines.
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