
4th Institute of Space Sciences Summer School

AI for Astronomy

DEEP LEARNING (DL) &
NEURAL NETWORKS (NNs)

Theory Day 2 - July 13th, 2021

Vanessa Graber - graber@ice.csic.es

Learning outcomes:

● Learn about some of the success stories of deep learning and why
this approach is so successful & popular right now.

● Get familiar with the field’s basic terminology.

● Provide a basis for understanding the remaining
lectures this week and applying deep learning in
your own research.

● Understand the theoretical background of
forward and backward propagation; the latter will
form the basis for the second hands-on session
this afternoon. Credit: HP Gauster / Unsplash

(A few) references:

● Online:
○ 3Blue1Brown: DL videos https://tinyurl.com/245cnnk8
○ reddit: https://www.reddit.com/r/MachineLearning/

● Books:
○ DL Illustrated: A Visual, Interactive Guide to AI by J. Krohn
○ DL by I. Goodfellow, Y. Bengio, and A. Courville

● Courses:
○ Elements of AI: ML basics https://www.elementsofai.com/
○ freeCodeCamp: DL with PyTorch https://tinyurl.com/3bs9ez3c
○ Coursera: ML by A. Ng https://tinyurl.com/4d6yx988
○ Udacity: Intro to DL with PyTorch https://tinyurl.com/4anysuwn

https://tinyurl.com/245cnnk8
https://www.reddit.com/r/MachineLearning/
https://www.elementsofai.com/
https://tinyurl.com/3bs9ez3c
https://tinyurl.com/4d6yx988
https://tinyurl.com/4anysuwn

Overview:

1. Introduction to Deep Learning

1.1 What is DL? 1.2 Why DL?
1.3 Success stories 1.4 Hardware

2. Neural Networks

2.1 Examples 2.2 NN basics
2.3 NN training 2.4 Forward pass

2.5 Optimisation 2.6 Backpropagation

1.1 What is DL? I

● DL is a subfield of AI and ML, focusing on using multi-layered
neural networks to learn from large datasets. Different to standard
ML approaches, DL does not require external feature engineering.

Credit: www.bigdata-insider.de Credit: Acheron Analytics

1.1 What is DL? II

● A neural network is composed of layers
(stacks of neurons). Deep in DL refers
to the fact that many hidden layers are
present between input and output layer.

● Each layer encodes a simplified
representation of the input data.

● In analogy with biological brains, a
DL algorithm learns more and more
about the input as the data is passed
through successive network layers;
often in a feedforward manner. Credit: Wikimedia Commons

1.2 Why DL?

● Recognising features in a hierarchical way allows deep NNs to
model complex non-linear relationships for large input data.

● This makes DL powerful when
working with unstructured data
such as images, where the number
of features / pixel can easily exceed
millions.

● BUT (i) for successful application
DL requires vast amounts of data;
(ii) DL algorithms are more diffi-
cult to interpret than other ML ones.

1000 x 800 x 3
(RBG)

= 2.4 x 106

Credit: iconimage

1.3 Success stories: Computer vision I

● Computer vision aims at giving computers the ability to gain under-
standing from digital images very much like we do, to automate
tasks such as image processing, analysing and then decision making.

● Such algorithms have a wide range
of applicability including medicine,
autonomous driving or surveillance.

● Early NN approaches were strongly
influenced by research in neuro-
physiology & signal processing
and modelled on biological vision.

Credit: @teenybiscuit

1.3 Success stories: Computer vision I

● Computer vision aims at giving computers the ability to gain under-
standing from digital images very much like we do, to automate
tasks such as image processing, analysing and then decision making.

● Such algorithms have a wide range
of applicability including medicine,
autonomous driving or surveillance.

● Early NN approaches were strongly
influenced by research in neuro-
physiology & signal processing
and modelled on biological vision.

Credit: CLIPAREA.com

1.3 Success stories: Computer vision II

● The first multi-layered NNs include Neocognitron (1979), LeNet-5
(1998), and AlexNet (2012). NNs got/get better and better due to new
computational techniques, hardware advances and larger datasets.

● ImageNet is a database with >14
million hand-annotated images
separated into >20,000 categories.

● ILSVRC highlighted that DL (in parti-
cular CNNs) outperforms standard
ML approaches and even humans.

C
re

di
t:

 J
as

on
 C

hu
an

g

C
re

di
t:

 k
ar

pa
th

y.
gi

th
ub

.io
/

1.3 Success stories: NLP I

● Natural language processing: get a computer to understand
words & sentences like humans do to solve tasks such as optical
character recognition, machine translation, or speech recognition.

● (i) in 2011 IBM Watson
beats previous champions
on Jeopardy!; (ii) in 2018
Google Duplex powering
Google’s virtual assistant
makes calls to hair salon
and a restaurant.

Credit: CBS/Merv Griffen

1.3 Success stories: NLP II

● NLP involves representing
text into machine under-
standable format such as
matrices and word vec-
tors / sequences, whose
context and relations can
be analysed by NNs (often
recurrent NNs).

● A simple example on
how to represent text is
shown on the right. Credit: Google

1.3 Success stories: Game playing

● Applying reinforced learning (interaction with environment to
receive feedback), programs based on DL have been shown to meet or
surpass human-level performance in (board and video) games.

● An example: AlphaGo plays the
two-player board game Go and
was able to win against a professio-
nal Go player in 2015.

● A complicated game with more
than 10170 board positions, the NN
learns from an initial set of games
and then playing against itself.Credit: Saran Poroong

1.4 Hardware: GPUs (& TPUs) I

● Although DL was already pioneered in the 1970s and 1980s, it took
until the late 2000s for a breakthrough. Deep NNs with many free
parameters require many fast computations for efficient training.

● The DL field was propelled
forward by the usage of
graphics processing units
(GPUs), which significantly
accelerated the optimisation
of NNs. E.g. AlexNet was a
GPU-based algorithm.

Credit: Nvidia

1.4 Hardware: GPUs (& TPUs) II

● Training large NNs boils down to a
lot of matrix multiplications with
billions of parameters. This takes
years on a standard CPU (central
processing unit), where operations
are executed sequentially.

● The advantage of GPUs is that operations can be run in parallel (at
the same time) and large amounts of data can be handled, resulting
in training speed-ups of about a factor 10 compared to CPUs.

● Tensor processing units (TPUs) originally developed by Google
and available since 2018 are even more optimised to the needs of DL.

Credit: Wikimedia Commons

1. Questions

● Go to www.menti.com & enter 8245 3668.

○ 1. The deep in Deep Learning refers to the number of neurons
stacked in each hidden layer of a neural network. Correct?
■ No
■ Yes

○ 2. The Deep Learning breakthrough was made possible by which
of the following aspects?
■ Advances in hardware (GPUs)
■ New algorithms
■ Large training datasets

http://www.menti.com

1. Questions

● Go to www.menti.com & enter 8245 3668.

○ 1. The deep in Deep Learning refers to the number of neurons
stacked in each hidden layer of a neural network. Correct?
■ No (it’s the numbers of hidden layers)
■ Yes

○ 2. The Deep Learning breakthrough was made possible by which
of the following aspects?
■ Advances in hardware (GPUs)
■ New algorithms
■ Large training datasets

http://www.menti.com

Overview:

1. Introduction to Deep Learning

1.1 What is DL? 1.2 Why DL?
1.3 Success stories 1.4 Hardware

2. Neural Networks

2.1 Examples 2.2 NN basics
2.3 NN training 2.4 Forward pass

2.5 Optimisation 2.6 Backpropagation

2.1 NN examples: house prices I

● Let’s look at a classic example: housing price prediction. We know
the house sizes (input vector) and want to predict their prices
(output vector) based on a few objects for which we know both. A
single neuron is the simplest network between these two vectors.

ReLU(x)
= max(0, x)

2.1 NN examples: house prices II

● To obtain better predictions, additional features that influence the
housing price can be added. We e.g. imagine the following scenario
including number of rooms, postal code & wealth of neighbourhood:

2.1 NN examples: house prices II

● To obtain better predictions, additional features that influence the
housing price can be added. We e.g. imagine the following scenario
including number of rooms, postal code & wealth of neighbourhood:

2.1 NN examples: MNIST dataset

● One of the benchmark problems in ML is image recognition using
the labelled MNIST dataset of handwritten digits. A DL program has
to determine the number from the 28 x 28 = 784 input pixel
containing a grayscale value between 0 (black) and 1 (white).

C
re

di
t:

 A
nd

re
w

 G
ib

ia
ns

ky

C
re

di
t:

 C
ec

el
ia

 S
ha

o

2.2 NN basics: the neuron

● By analogy with neuroscience, we interpret a
neuron as an object holding a numerical
value between 0 and 1, its activation.

● For digit recognition, our
input layer consists of 784
neurons corresponding to
the image pixels.

● Output layer has 10 neurons
with activations correspon-
ding to the probability of
recognising the digits 0-9.

Credit: ktsdesign
Credit: 3Blue1Brown, YT

?

2.2 NN basics: multilayer perceptron

● The multilayer perceptron is the classic DL NN design consisting of
input layer, hidden layers and output layer that are fully connected.

Credit: 3Blue1Brown, YT Credit: 3Blue1Brown, YT

2.2 NN basics: feature recognition

● To extract features, we e.g. imagine: (i) the second
hidden layer represent patterns such as loops or
lines; (ii) the first hidden layer abstracts these
subfeatures into edges.

pixel → edges

 → patterns → digits

Credits: 3Blue1Brown, YT

2.2 NN basics: the components I

● The activations in the second network layer (first
hidden layer) are obtained as a weighted sum
of the activations in the first layer. For example:

● The weights can be visualised as a
matrix that we multiply with the input
layer. To recognise edges in a certain
part, those weights have to be positive
while all others should vanish.

Credit: 3Blue1Brown, YT

C
re

di
t:

 3
B

lu
e1

B
ro

w
n,

 Y
T

2.2 NN basics: the components I

● The activations in the second network layer (first
hidden layer) are obtained as a weighted sum
of the activations in the first layer. For example:

● The weights can be visualised as a
matrix that we multiply with the input
layer. To recognise edges in a certain
part, those weights have to be positive
while all others should vanish.

Credit: 3Blue1Brown, YT

C
re

di
t:

 3
B

lu
e1

B
ro

w
n,

 Y
T

2.2 NN basics: the components II

● Our weighted sum can take any value, but for comparison is often
rescaled by an activation function. Historically, the sigmoid
function was used to obtain weighted sums in the range 0 to 1.
Modern NNs typically use the ReLU as the activation function.

● To trigger a certain neuron above a
specific threshold, we can add a
bias to the sum, shifting the sigmoid.

Credit: 3Blue1Brown, YT

2.2 NN basics: it’s all maths

● For our two-hidden layer NN with 16 neurons each, 784 input and 10
output neurons, we are left with 13,002 free parameters to adjust.

● Everything we have seen is closely connected to linear algebra and
vector calculus and we can take advantage of this when optimising
the free parameters.

2. Questions I

● Go to www.menti.com & enter 1244 8724.

○ 1. The idea of a deep NN is that subsequent layers obtain
successively abstract representations of the input data?
■ Yes
■ No

○ 2. Which of the following is optimised during NN training?
■ Network weights
■ Activation function
■ Network biases

http://www.menti.com

2. Questions I

● Go to www.menti.com & enter 1244 8724.

○ 1. The idea of a deep NN is that subsequent layers obtain
successively abstract representations of the input data?
■ Yes
■ No

○ 2. Which of the following is optimised during NN training?
■ Network weights
■ Activation function
■ Network biases

http://www.menti.com

2.3 NN training

● Training a NN proceeds in the following steps:

○ Forward pass: calculate individual neuron
activations for each network layer.

○ Cost calculation: determine the cost (error) of
the prediction; how close is the prediction to the
expected output (digit label from MNIST).

○ Update step: update all network parameters to produce a better
prediction; this involves the crucial step of backpropagation.

● Repeat these steps until the network converges.

C
re

di
t:

 S
 B

ak
er

 /
 U

ns
pl

as
h

2.4 Forward pass

● We have already seen earlier how activations are calculated for the
first hidden layer. We can generalise this to all L network layers:

● For first forward pass, weights & biases are randomly initialised.

2.5 Optimisation: cost function I

● At the end of each forward pass, we obtain a
prediction of the network. To determine
quantitatively how good this prediction is w.r.t.
to a ground truth (the digit label), we require
a cost function.

● For each set of NN parameters this function
gives a single number that represent how
good our network is doing. The goal is to find
the set of weights and biases that minimises
this cost function. Credit: 3Blue1Brown, YT

2.5 Optimisation: cost function II

● Selecting an appropriate cost function is crucial for NN training. A
typical example is the mean square error, which we calculate
between the activations of the final layer and the ground truths for a
single image and then average for all training examples.

C
re

di
ts

: 3
B

lu
e1

B
ro

w
n,

 Y
T

2.5 Optimisation: gradient descent I

● Like discussed yesterday, the standard way to minimise the cost
function is via gradient descent, an algorithm that essentially helps
us find a minimum (local or global) of the cost landscape.

● To do so, we determine the direction
of the steepest gradient at a given
point and make a step in the opposite
direction, or mathematically

where α is the learning rate.
Credit: Amini et al. (2018)

2.5 Optimisation: gradient descent II

● While it is possible to determine gradients for simple
cost landscapes analytically and then update weights
and biases to obtain better predictions, doing that
even for our simple two-layer NN is not feasible.

● Keep in mind that we need to compute
derivatives w.r.t. to 13,002 parameters!!

● The crucial advancement in DL came in the
form of backpropagation, an algorithm to
efficiently compute the gradients of the cost
function for a single input/output pair.

Credit: 3Blue1Brown, YT

2.6 Backpropagation: intuition

● Before we turn to the actual mathematics of the backpropagation
algorithm, let’s develop a bit of intuition for what is happening.

● To do so, please watch one of the videos from 3Blue1Brown on
Youtube dedicated to

What is backpropagation really doing?
| Chapter 3, Deep learning

https://tinyurl.com/2f6aj9yk

2. Questions II

● Go to www.menti.com & enter 5563 4010.

○ 3. Which of the following adjustments will increase the activation
of any given neuron?
■ Decreasing its bias
■ Increasing weights ∝ to activations of previous layer
■ Adjust activations of previous layer ∝ to weights

○ 4. What is the benefit of batched stochastic gradient descent?
■ The update steps are more accurate.
■ It is faster than standard gradient descent.

http://www.menti.com

2. Questions II

● Go to www.menti.com & enter 5563 4010.

○ 3. Which of the following adjustments will increase the activation
of any given neuron?
■ Decreasing its bias
■ Increasing weights ∝ to activations of previous layer
■ Adjust activations of previous layer ∝ to weights

○ 4. What is the benefit of batched stochastic gradient descent?
■ The update steps are more accurate.
■ It is faster than standard gradient descent.

http://www.menti.com

2.6 Backpropagation: maths I

● To update the network parameters, we want to calculate

● The main idea of backpropagation is to compute the cost in our last
layer and successively backpropagate it through all previous layers. To
derive the corresponding equations, we will require the chain rule:

2.6 Backpropagation: maths II

● Let’s look at a simple example to understand how the different
network parameters actually affect our cost function:

● The cost for a single training example is given by the following
expression using the activation in the final neuron (L)

2.6 Backpropagation: maths II

● Let’s look at a simple example to understand how the different
network parameters actually affect our cost function:

● The cost for a single training example is given by the following
expression using the activation in the final neuron (L)

2.6 Backpropagation: maths III

● Let’s first focus on derivative of C w.r.t. to the final weight:

● Similarly, to obtain the derivative of C w.r.t to the weight in L-1:

2.6 Backpropagation: maths IV

● We can evaluate these partial derivatives to obtain:

● Similarly, we obtain for the derivative w.r.t. the last bias

2.6 Backpropagation: maths V

● For the derivatives w.r.t. To parameters in the second to last layer:

● Equivalent expression hold for all hidden layers. Backpropagation
is efficient, since we can reuse quantities from the previous layer.

Summary:

● We have introduced the concept of Deep Learning, discussed some
of the main success stories (image recognition, natural language
processing and game playing) and addressed the reasons why this
approach is so successful right now (data sets, hardware, algorithms).

● Subsequently, we addressed some classic examples of neural networks
and discussed the main components of these structures (neurons,
activation functions, weights and biases) and how the concept of
feature abstraction works.

● We then talked about the training process of deep neural networks
and looked at forward passes, cost calculation and finally the
update step which involved the crucial backpropagation algorithm.

