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Learning outcomes:

● Learn about some of the success stories of deep learning and why 
this approach is so successful & popular right now.

● Get familiar with the field’s basic terminology.

● Provide a basis for understanding the remaining 
lectures this week and applying deep learning in 
your own research.

● Understand the theoretical background of 
forward and backward propagation; the latter will 
form the basis for the second hands-on session 
this afternoon. Credit: HP Gauster / Unsplash



(A few) references:

● Online:
○ 3Blue1Brown: DL videos https://tinyurl.com/245cnnk8
○ reddit: https://www.reddit.com/r/MachineLearning/

● Books:
○ DL Illustrated: A Visual, Interactive Guide to AI by J. Krohn
○ DL by I. Goodfellow, Y. Bengio, and A. Courville 

● Courses:
○ Elements of AI: ML basics https://www.elementsofai.com/
○ freeCodeCamp: DL with PyTorch https://tinyurl.com/3bs9ez3c
○ Coursera: ML by A. Ng https://tinyurl.com/4d6yx988
○ Udacity: Intro to DL with PyTorch https://tinyurl.com/4anysuwn

https://tinyurl.com/245cnnk8
https://www.reddit.com/r/MachineLearning/
https://www.elementsofai.com/
https://tinyurl.com/3bs9ez3c
https://tinyurl.com/4d6yx988
https://tinyurl.com/4anysuwn


Overview: 

1. Introduction to Deep Learning

1.1 What is DL? 1.2 Why DL?
1.3 Success stories 1.4 Hardware

2. Neural Networks

2.1 Examples 2.2 NN basics
2.3 NN training 2.4 Forward pass

2.5 Optimisation 2.6 Backpropagation



1.1   What is DL? I

● DL is a subfield of AI and ML, focusing on using multi-layered 
neural networks to learn from large datasets. Different to standard 
ML approaches, DL does not require external feature engineering.

Credit: www.bigdata-insider.de Credit: Acheron Analytics



1.1   What is DL? II

● A neural network is composed of layers 
(stacks of neurons). Deep in DL refers 
to the fact that many hidden layers are 
present between input and output layer.

● Each layer encodes a simplified 
representation of the input data.

● In analogy with biological brains, a 
DL algorithm learns more and more 
about the input as the data is passed 
through successive network layers; 
often in a feedforward manner. Credit: Wikimedia Commons



1.2   Why DL?

● Recognising features in a hierarchical way allows deep NNs to 
model complex non-linear relationships for large input data.

● This makes DL powerful when 
working with unstructured data 
such as images, where the number 
of features / pixel can easily exceed 
millions.

● BUT (i) for successful application 
DL requires vast amounts of data; 
(ii) DL algorithms are more diffi- 
cult to interpret than other ML ones.

1000 x 800 x 3 
(RBG) 

=  2.4 x 106

Credit: iconimage



1.3   Success stories: Computer vision I  

● Computer vision aims at giving computers the ability to gain under- 
standing from digital images very much like we do, to automate 
tasks such as image processing, analysing and then decision making.

● Such algorithms have a wide range 
of applicability including medicine, 
autonomous driving or surveillance.

● Early NN approaches were strongly 
influenced by research in neuro- 
physiology & signal processing 
and modelled on biological vision.

Credit: @teenybiscuit
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1.3   Success stories: Computer vision II  

● The first multi-layered NNs include Neocognitron (1979), LeNet-5 
(1998), and AlexNet (2012). NNs got/get better and better due to new 
computational techniques, hardware advances and larger datasets. 

● ImageNet is a database with >14 
million hand-annotated images 
separated into >20,000 categories. 

● ILSVRC highlighted that DL (in parti- 
cular CNNs) outperforms standard 
ML approaches and even humans.
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1.3   Success stories: NLP I

● Natural language processing: get a computer to understand 
words & sentences like humans do to solve tasks such as optical 
character recognition, machine translation, or speech recognition.

● (i) in 2011 IBM Watson 
beats previous champions 
on Jeopardy!; (ii) in 2018 
Google Duplex powering 
Google’s virtual assistant 
makes calls to hair salon 
and a restaurant.

Credit: CBS/Merv Griffen



1.3   Success stories: NLP II 

● NLP involves representing 
text into machine under- 
standable format such as 
matrices and word vec- 
tors / sequences, whose 
context and relations can 
be analysed by NNs (often 
recurrent NNs).

● A simple example on 
how to represent text is 
shown on the right. Credit: Google



1.3   Success stories: Game playing 

● Applying reinforced learning (interaction with environment to 
receive feedback), programs based on DL have been shown to meet or 
surpass human-level performance in (board and video) games.

● An example: AlphaGo plays the 
two-player board game Go and 
was able to win against a professio- 
nal Go player in 2015. 

● A complicated game with more 
than 10170 board positions, the NN 
learns from an initial set of games 
and then playing against itself.Credit: Saran Poroong



1.4   Hardware: GPUs (& TPUs) I

● Although DL was already pioneered in the 1970s and 1980s, it took 
until the late 2000s for a breakthrough. Deep NNs with many free 
parameters require many fast computations for efficient training.

● The DL field was propelled 
forward by the usage of 
graphics processing units 
(GPUs), which significantly 
accelerated the optimisation  
of NNs. E.g. AlexNet was a 
GPU-based algorithm.

Credit: Nvidia



1.4   Hardware: GPUs (& TPUs) II

● Training large NNs boils down to a 
lot of matrix multiplications with 
billions of parameters. This takes  
years on a standard CPU (central 
processing unit), where operations 
are executed sequentially.

● The advantage of GPUs is that operations can be run in parallel (at 
the same time) and large amounts of data can be handled, resulting 
in training speed-ups of about a factor 10 compared to CPUs.

● Tensor processing units (TPUs) originally developed by Google 
and available since 2018 are even more optimised to the needs of DL.

Credit: Wikimedia Commons



1.  Questions

● Go to www.menti.com & enter 8245 3668.

○ 1. The deep in Deep Learning refers to the number of neurons 
stacked in each hidden layer of a neural network. Correct?
■ No
■ Yes

○ 2. The Deep Learning breakthrough was made possible by which 
of the following aspects?
■ Advances in hardware (GPUs)
■ New algorithms
■ Large training datasets

http://www.menti.com
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2.1   NN examples: house prices I

● Let’s look at a classic example: housing price prediction. We know 
the house sizes (input vector) and want to predict their prices 
(output vector) based on a few objects for which we know both. A 
single neuron is the simplest network between these two vectors.

ReLU(x) 
= max(0, x)



2.1   NN examples: house prices II

● To obtain better predictions, additional features that influence the 
housing price can be added. We e.g. imagine the following scenario 
including number of rooms, postal code & wealth of neighbourhood:



2.1   NN examples: house prices II

● To obtain better predictions, additional features that influence the 
housing price can be added. We e.g. imagine the following scenario 
including number of rooms, postal code & wealth of neighbourhood:



2.1   NN examples: MNIST dataset

● One of the benchmark problems in ML is image recognition using 
the labelled MNIST dataset of handwritten digits. A DL program has 
to determine the number from the 28 x 28 = 784 input pixel 
containing a grayscale value between 0 (black) and 1 (white).  
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2.2   NN basics: the neuron

● By analogy with neuroscience, we interpret a 
neuron as an object holding a numerical 
value between 0 and 1, its activation.

● For digit recognition, our 
input layer consists of 784 
neurons corresponding to 
the image pixels. 

● Output layer has 10 neurons 
with activations correspon- 
ding to the probability of 
recognising the digits 0-9.

Credit: ktsdesign
Credit: 3Blue1Brown, YT

?



2.2   NN basics: multilayer perceptron

● The multilayer perceptron is the classic DL NN design consisting of 
input layer, hidden layers and output layer that are fully connected.

Credit: 3Blue1Brown, YT Credit: 3Blue1Brown, YT



2.2   NN basics: feature recognition

● To extract features, we e.g. imagine: (i) the second 
hidden layer represent patterns such as loops or 
lines; (ii) the first hidden layer abstracts these 
subfeatures into edges.

pixel → edges

     → patterns → digits
  

Credits: 3Blue1Brown, YT



2.2   NN basics: the components I

● The activations in the second network layer (first 
hidden layer) are obtained as a weighted sum 
of the activations in the first layer. For example:

● The weights can be visualised as a 
matrix that we multiply with the input 
layer. To recognise edges in a certain 
part, those weights have to be positive 
while all others should vanish.

Credit: 3Blue1Brown, YT
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2.2   NN basics: the components II

● Our weighted sum can take any value, but for comparison is often 
rescaled by an activation function. Historically, the sigmoid 
function was used to obtain weighted sums in the range 0 to 1. 
Modern NNs typically use the ReLU as the activation function.

● To trigger a certain neuron above a 
specific threshold, we can add a 
bias to the sum, shifting the sigmoid.

Credit: 3Blue1Brown, YT



2.2   NN basics: it’s all maths

● For our two-hidden layer NN with 16 neurons each, 784 input and 10 
output neurons, we are left with 13,002 free parameters to adjust.

● Everything we have seen is closely connected to linear algebra and 
vector calculus and we can take advantage of this when optimising 
the free parameters.



2.  Questions I

● Go to www.menti.com & enter 1244 8724.

○ 1. The idea of a deep NN is that subsequent layers obtain 
successively abstract representations of the input data?
■ Yes
■ No

○ 2. Which of the following is optimised during NN training?
■ Network weights
■ Activation function
■ Network biases

http://www.menti.com
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2.3   NN training

● Training a NN proceeds in the following steps:

○ Forward pass: calculate individual neuron 
activations for each network layer.

○ Cost calculation: determine the cost (error) of 
the prediction; how close is the prediction to the 
expected output (digit label from MNIST).

○ Update step: update all network parameters to produce a better 
prediction; this involves the crucial step of backpropagation.

● Repeat these steps until the network converges.
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2.4   Forward pass

● We have already seen earlier how activations are calculated for the 
first hidden layer. We can generalise this to all L network layers:

● For first forward pass, weights & biases are randomly initialised.



2.5   Optimisation: cost function I

● At the end of each forward pass, we obtain a 
prediction of the network. To determine 
quantitatively how good this prediction is w.r.t. 
to a ground truth (the digit label), we require 
a cost function.

● For each set of NN parameters this function 
gives a single number that represent how 
good our network is doing. The goal is to find 
the set of weights and biases that minimises 
this cost function. Credit: 3Blue1Brown, YT



2.5   Optimisation: cost function II

● Selecting an appropriate cost function is crucial for NN training. A 
typical example is the mean square error, which we calculate 
between the activations of the final layer and the ground truths for a 
single image and then average for all training examples.
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2.5   Optimisation: gradient descent I

● Like discussed yesterday, the standard way to minimise the cost 
function is via gradient descent, an algorithm that essentially helps 
us find a minimum (local or global) of the cost landscape.

● To do so, we determine the direction 
of the steepest gradient at a given 
point and make a step in the opposite 
direction, or mathematically

where α is the learning rate.
Credit: Amini et al. (2018)



2.5   Optimisation: gradient descent II

● While it is possible to determine gradients for simple 
cost landscapes analytically and then update weights 
and biases to obtain better predictions, doing that 
even for our simple two-layer NN is not feasible. 

● Keep in mind that we need to compute 
derivatives w.r.t. to 13,002 parameters!!

● The crucial advancement in DL came in the 
form of backpropagation, an algorithm to 
efficiently compute the gradients of the cost 
function for a single input/output pair.

Credit: 3Blue1Brown, YT



2.6   Backpropagation: intuition

● Before we turn to the actual mathematics of the backpropagation 
algorithm, let’s develop a bit of intuition for what is happening.

● To do so, please watch one of the videos from 3Blue1Brown on 
Youtube dedicated to 

What is backpropagation really doing? 
| Chapter 3, Deep learning

https://tinyurl.com/2f6aj9yk



2.  Questions II

● Go to www.menti.com & enter 5563 4010.

○ 3. Which of the following adjustments will increase the activation 
of any given neuron?
■ Decreasing its bias
■ Increasing weights ∝ to activations of previous layer
■ Adjust activations of previous layer ∝ to weights

○ 4. What is the benefit of batched stochastic gradient descent?
■ The update steps are more accurate.
■ It is faster than standard gradient descent.

http://www.menti.com
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2.6   Backpropagation: maths I

● To update the network parameters, we want to calculate

● The main idea of backpropagation is to compute the cost in our last 
layer and successively backpropagate it through all previous layers. To 
derive the corresponding equations, we will require the chain rule:



2.6   Backpropagation: maths II

● Let’s look at a simple example to understand how the different 
network parameters actually affect our cost function:

● The cost for a single training example is given by the following 
expression using the activation in the final neuron (L)



2.6   Backpropagation: maths II

● Let’s look at a simple example to understand how the different 
network parameters actually affect our cost function:

● The cost for a single training example is given by the following 
expression using the activation in the final neuron (L)



2.6   Backpropagation: maths III

● Let’s first focus on derivative of C w.r.t. to the final weight:

● Similarly, to obtain the derivative of C w.r.t to the weight in L-1:



2.6   Backpropagation: maths IV

● We can evaluate these partial derivatives to obtain:

● Similarly, we obtain for the derivative w.r.t. the last bias



2.6   Backpropagation: maths V

● For the derivatives w.r.t. To parameters in the second to last layer:

● Equivalent expression hold for all hidden layers. Backpropagation 
is efficient, since we can reuse quantities from the previous layer.



Summary: 

● We have introduced the concept of Deep Learning, discussed some 
of the main success stories (image recognition, natural language 
processing and game playing) and addressed the reasons why this 
approach is so successful right now (data sets, hardware, algorithms).

● Subsequently, we addressed some classic examples of neural networks 
and discussed the main components of these structures (neurons, 
activation functions, weights and biases) and how the concept of 
feature abstraction works.

● We then talked about the training process of deep neural networks 
and looked at forward passes, cost calculation and finally the 
update step which involved the crucial backpropagation algorithm.


