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Recap I: 

Covered last lecture: equivalence principles,      
Einstein equations

● The weak equivalence principle has multiple forms, reflec- 
ting the fact that we cannot distinguish between gravitational & 
inertial forces with any local experiment using test particles.

● The strong equivalence principle generalises the WEP to 
self-gravitating bodies and gravitational experiments.

● The Einstein equations are a set of tensor equations that 
completely control the dynamics of gravitation.



Recap II: 

Covered last lecture: Einstein equations, 
Schwarzschild solution

● The essence of the Einstein equations is that “Spacetime tells 
matter how to move, while matter tells spacetime how to 
curve.” as summarised by John Wheeler.

● In General Relativity, gravitational phenomena arise not 
from forces or fields but from the curvature of spacetime itself.

● The (unique) spherically symmetric & static solution of 
the vacuum Einstein Equations is Schwarzschild’s solution.



Overview: 

Covered so far: special relativity, tensor calculus, 
equivalence principles, Einstein equations, 

Schwarzschild solution

1. A general introduction
2. Non-rotating black holes

3. Charged & rotating black holes
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1.1  Video

● In today’s lecture, we will start with a little video to provide a 
general introduction to the topic of black holes. It will set the 
stage for our more mathematical discussion in the remainder of 
this lecture.

○ The Ultimate Guide to Black Holes by Kurzgesagt

www.youtube.com/watch?v=QqsLTNkzvaY 

○ To break things up, we will watch in two 
blocks and have 2 rounds of questions.

https://www.youtube.com/watch?v=QqsLTNkzvaY


1.2  Questions

● Watch until 5:32 & go to www.menti.com & enter 55 28 91 5.

○ 1. The majority of BHs form when very massive stars    
die and undergo gravitational collapse.
■ Incorrect
■ Correct

○ 2. Although light cannot escape from inside a BH’s event 
horizon, can we observe them indirectly via effects on 
external particles, e.g., those forming an accretion disk?
■ Yes
■ No

http://www.menti.com


1.3  Questions

● Watch the rest & go to www.menti.com & enter 3115 2377.

○ 3. Which of these quantities completely describe a BH?
■ Its mass, spin and charge.
■ Its event horizon.
■ The amount of matter that crossed its event horizon.

○ 4. An object within the ergosphere around a rotating BH 
cannot appear at rest for a distant observer.
■ Incorrect 
■ Correct

http://www.menti.com


1.2  Answers

● Watch until 5:32 & go to www.menti.com & enter 55 28 91 5.

○ 1. The majority of BHs form when very massive stars    
die and undergo gravitational collapse.
■ Incorrect
■ Correct

○ 2. Although light cannot escape from inside a BH’s event 
horizon, can we observe them indirectly via effects on 
external particles, e.g., those forming an accretion disk?
■ Yes
■ No

http://www.menti.com


1.3  Answers 

● Watch the rest & go to www.menti.com & enter 3115 2377.

○ 3. Which of these quantities completely describe a BH?
■ Its mass, spin and charge.
■ Its event horizon.
■ The amount of matter that crossed its event horizon.

○ 4. An object within the ergosphere around a rotating BH 
cannot appear at rest for a distant observer.
■ Incorrect 
■ Correct

http://www.menti.com


Overview: 

Covered so far: special relativity, tensor calculus, 
equivalence principles, Einstein equations, 

Schwarzschild solution

1. A general introduction
2. Non-rotating black holes (NRBHs)

3. Charged & rotating black holes



2.1  NRBHs - Singularities

● Last lecture, we encountered the Schwarzschild solution of 
the vacuum Einstein Equations. Our choice of coordinates, i.e.,  
(t, r, θ, ϕ), reflected the spherical symmetry of the spacetime. 

● However, our coordinate system does not cover the entire 
manifold, e.g., the points θ = 0, π are not uniquely defined.

● These are so-called coordinate singularities, which are an 
artefact of the choice of coordinate system. They can be 
removed using a different system, e.g., Cartesian coordinates.



2.2  NRBHs - Schwarzschild radius

● The SS solution is degenerate at two other points r1 = 2m and 
r2 = 0. r2 cannot be removed & is a true (physical) singularity.

● r1 is called the Schwarzschild radius rs. It is a removable 
coordinate singularity but separates the manifold into two 
disconnected regions, where t & r invert their character:

○ 2m < r < ∞: the exterior with r = spacelike and t = timelike.
○ 0 < r < 2m: the interior with r = timelike and t = spacelike.



2.3  NRBHs - Spacetime diagrams

● To illustrate this, we look at the 
local light cone at different 
points. We construct these via 
lightlike (null) lines, ds2 = 0.

● Fixing θ & ϕ, we recover curves 
t(r) that satisfy this constraint, 
i.e., the null congruences.

● As observers move along timelike worldlines, they ‘move 
into’ their future light cones. Inside rs the light cone is flipped 
and an observer will ALWAYS fall into the singularity.



2.4  Questions

● Go to www.menti.com & enter 4406 6489.

○ 1. Which of the following are coordinate singularities of 
the SS solution, i.e., removable with a transformation?
■ r = 0
■ r = 2m
■ θ = π

○ 2. There is one clear problem with the diagram on the 
previous page. Can you think of what this might be? Please 
type out your answer in 1 or 2 sentences, but not more. 

http://www.menti.com


2.4  Answers

● Go to www.menti.com & enter 4406 6489.

○ 1. Which of the following are coordinate singularities of 
the SS solution, i.e., removable with a transformation?
■ r = 0
■ r = 2m
■ θ = π

○ 2. The spacetime diagram seems to suggest that an observer 
outside the Schwarzschild radius (or an ingoing light ray) 
would require infinite time to reach rs and cannot cross it.

http://www.menti.com


2.5  NRBHs - Particle obits

● The motion of a massive particle around a BH is described by 
the geodesic equation parameterised by τ. As the SS metric 
is symmetric about θ = π/2, it’s convenient to consider particle 
motion in the equatorial plane.

● As this motion conserves the particle’s total energy E and its 
specific angular momentum l,                                                 
the equation of motion is



2.6  Eddington-Finkelstein coordinates

● The issue is that the motion of a test 
particle is not determined by the 
Schwarzschild coordinate t but instead 
the proper time τ. When determining 
the trajectory of an infalling particle τ
(r), we find that it falls continuously 
towards r = 0 in finite time.

● Ingoing congruences become straight lines when transforming 
t’ = t + 2m ln(r - 2m). The Eddington-Finkelst. line element is



2.7  NRBHs - Event horizons

● The 2D spacetime diagram in Eddington- 
Finkelstein coordinates looks now like this:

● With angular information, we can use a diffe- 
rent perspective and look at the equatorial 
plane to visualise light-cone cross sections. 

● Approaching rs from infinity, the cone apexes 
(black dots) move from the circle centres to 
outer boundary. Once we reach rs , the cones 
start to tilt and all timelike & null geodesics 
point towards r = 0. rs is the event horizon.



2.8  The black hole concept

● We introduced the SS solution as a mathematically abstract 
concept. To make this concrete, consider the gravitational 
collapse of a spherically symmetric star. The star will contract 
until all its matter is contained in the singularity. 

● Imagine an observer on the surface 
sending out regular light signals.  
A distant observer sees these with 
larger and larger time gaps until the 
surface contracts beyond rs & no more 
signals appear. It becomes ‘black’.



2.9  Exercise

● The idea that light cannot escape a gravitational field has a 
classical analogue (assuming its particle nature). Consider a 
particle of mass m, moving away radially from a uniform, 
symmetric matter distribution of mass M and radius R. 

● Show that R is the Schwarzschild radius for an escape 
velocity (the velocity at the surface of M, so that v → 0 for        r 
→ ∞) equal to the speed of light c.



2.9  Solution

● The constraint v → 0 for r → ∞ implies that the total energy 
vanishes, i.e., E = 0. Solving for the velocity, we then find 
v2 = 2 GM/r, so that the escape velocity is v’2 = 2 GM/R. 

● If a particle at r = R has less than v’, it will eventually be pulled 
back by the gravitational attraction of the mass distribution. 
Now if we want a photon escape velocity at infinity that is equal 
to the speed of light, we require c2 = 2 GM/R. 

● Rearranging leads exactly to 



2.10  NRBHs - Tidal effects

● If we go beyond point particles in space- 
time to objects with extended mass 
distribution, spacetime curvature will 
result in tidal effects. 

● These will cause elongation in the direction 
of motion & compression in the transverse 
direction. In the case of a BH, this effect 
becomes infinite as we reach the singularity.

● An astronaut falling into a black hole will thus 
experience spaghettification.



2.11  NRBHs - Orbital stability

● Earlier, we considered purely radial motion of massive particles. 
Similarly, we could ask how a particle moves along circular 
orbits in the equatorial plane, i.e., r = const but ɸ = ɸ(τ or r).

● From the resulting equations, it’s possible to deduce that

○ rISCO = 3 rs : this is the smallest marginally stable circular 
orbit in which a test particle can stably orbit a SS BH; it’s 
called the innermost stable circular orbit (ISCO).

○ 2 rs < r < rISCO : particles can still be bound but they are 
unstable; 2 rs is also called the marginally bound orbit.



2.12  NRBHs - Photon orbits

● Orbits for massless particles cannot be parameterised by the 
proper time. Opting for a general affine parameter u, the 
equation of motion that follows from the geodesic equations is

● Looking at circular orbits, we find a single possible (although 
unstable) solution at rph = 1.5 rs . This orbit is referred to as the 
photon sphere. Gravity is so strong that light is forced onto a 
circle. This effect does not have a Newtonian analogue.



2.13  NRBHs - White holes

● While the SS solution in Eddington-Finkelstein coordinates 
highlights that rs is not a true singularity, our redefinition of t 
→ t’ causes the solution to no longer be time-symmetric.

● In principle, we can introduce the time-reversed (retarded)  
solution by making another transition t* = t - 2m ln(r - 2m). 
In this case, the outgoing congruences would become straight.

● The solution is again regular for 0 < r < ∞, 
with r = 2m acting as a special surface. BUT 
now only past-directed timelike or null lines 
can cross. This is essentially a white hole.



2.14  NRBHs - Kruskal & beyond

● It is possible to extend the EF solutions in such a way that all 
geodesics can either be extended to ∞ or terminate at a true 
singularity. A spacetime that satisfies this is called maximal. 

● For this, a new choice of coordinates is 
needed. The maximal extension of 
the SS metric is the Kruskal metric: 



2.15  Questions

● Go to www.menti.com & enter 5842 0251.

○ 3. The apparent issue of SS coordinates, i.e., test particles 
taking infinite time to cross the event horizon, is resolved  
by considering the object's motion with proper time τ.
■ Correct
■ Incorrect

○ 4. Are white holes, the (hypothetical) ‘inverse’ of BHs, 
mathematically valid solutions of the Einstein Equations?
■ No
■ Yes

http://www.menti.com


2.15  Answers

● Go to www.menti.com & enter 5842 0251.

○ 3. The apparent issue of SS coordinates, i.e., test particles 
taking infinite time to cross the event horizon, is resolved  
by considering the object's motion with proper time τ.
■ Correct
■ Incorrect

○ 4. Are white holes, the (hypothetical) ‘inverse’ of BHs, 
mathematically valid solutions of the Einstein Equations?
■ No
■ Yes

http://www.menti.com


Overview: 

Covered so far: special relativity, tensor calculus, 
equivalence principles, Einstein equations, 

Schwarzschild solution, non-rotating BH

1. A general introduction
2. Non-rotating black holes

3. Charged & rotating black holes (CRBHs)



3.1  CRBHs - Charged BHs

● To go beyond the simple non-rotating BH picture, we will first 
consider electrically charged solutions, although BHs of 
large charge are unlikely to exist in nature.

● In contrast to the Schwarzschild solution, which is derived from 
the vacuum Einstein Equations, charged BHs cannot satisfy the 
same equations. Presence of an electric field causes Tab ≠ 0.

● We again look for a static, asymptotically flat & spherical- 
ly symmetric solution to the Einstein-Maxwell equations:



3.2 CRBHs - Reissner-Nordstøm solution

● The full solution obtained from Einstein’s equations has two 
integration constants, m & q, (which we interpret as geome- 
tric mass & charge located at r = 0). The line element reads

● Looking at the element gtt, we can use the Newtonian limit to 
determine q as well as derive the horizon of a charged BH:



3.3 CRBHs - Observations

● The physical spacetime realisations depend on the roots in r
士

. 
For q > m (super-extremal BHs), we cannot have physical 
solutions as no event horizon exists, while for q = m (extremal 
BHs) the horizons are degenerate. We typically focus on q < m.

● We distinguish three regions in 
which the metric remains regular: 
(I) r+ < r < ∞, (II) r- < r < r+, (III) 0 < 
r < r-. The situation at r+ is similar to 
that at rs . However, the existence of r-  
alters the role of singularity at r = 0.



3.4  CRBHs - Rotating BHs

● As BHs form via gravitational collapse of rotating massive stars 
the study of rotating BH is important for astrophysics.

● However, the solution of the vacuum EEs for rotating BHs is 
rather tedious (it was only discovered in 1963), so we will only 
refer to results here. The line element can be expressed in 
different forms. In Boyer-Lindquist coordinates it reads



3.5  CRBHs - Kerr solution

● In Boyer-Lindquist form, (r, θ, ɸ) are standard oblate spheroi- 
dal coordinates, which are related to Cartesian coordinates (x, 
y, z). Because of this, it’s possible to rewrite the line element in 
terms of Cartesian-type coordinates as originally done by Kerr. 

● We can rewrite the solution in 
a more convenient way to 
directly read off the metric:



3.6  CRBHs - Basic properties

● We observe that the Kerr solution depends on two parameters 
m and a, where the latter is the so-called Kerr parameter a 
= J/Mc representing the angular momentum of the BH. For 
a = 0 (r → ∞), we recover the SS (Minkowski) solution.

● As the metric coefficients are independent of t & ɸ, the Kerr 
solution is stationary & axially symmetric but not static, 
i.e., t → - t does not reproduce the same solution. However, ds2 
is invariant under simultaneous inversion of t & ɸ.

● We also note the final term, dt x dɸ, implies the coupling 
between time and motion in the rotational plane for a ≠ 0.



3.7  CRBHs - Singularities & horizons

● The Kerr solution has one physical singularity at ⍴ = 0. This 
occurs for x2 + y2 = a2 and z = 0, suggesting that the singularity 
is not a point but a ring of radius a in the equatorial plane.

● When Δ = 0, the grr component of 
the metric diverges. We recover   
the following two roots:

● These have the same structure as the RN solution, so we con- 
clude that a > m is unphysical & physical solutions correspond 
to a ≤ m. We again recover 3 regular regions of the Kerr 
solution with coordinate singularities / event horizons at r

土
. 



3.8  CRBHs - Ergosphere I

● In addition, we observe special behaviour                                 
arising from the gtt metric element and obtain two apparent 
singularities of the form

● At the outer surface (surface of 
infinite redshift), the dt2 term 
changes from timelike (outside) 
to spacelike (inside).

● The region between r+ and rs+ is 
called the ergosphere. 

●



3.9  CRBHs - Ergosphere II

● Within the ergosphere, the rotating black hole affects the sur- 
rounding spacetime so much that inertial reference frames are 
entrained by it. This is an extreme form of frame dragging.

● As a result, an object inside the ergosphere cannot appear 
stationary for a distant observer (unless it could move faster 
than the speed of light w.r.t to the local spacetime). It has to 
co-rotate with the central BH. 

● As particles are outside r+, they could 
escape the ergosphere. It is possible to 
extract energy via Penrose process.



3.10  CRBHs - Orbits

● All these considerations can be properly investigated looking at 
the motion of test particles like we did for the non-rotating BH.

● The equations of motion depend on a third integral of 
motion related to the BH’s angular momentum L, leading to    
a generalised form of the equation we saw on slide 2.5.

● One finds that particles are no 
longer confined to planes but 
orbit in a torus-like region 
around the central black hole.  



3.11  Questions

● Go to www.menti.com & enter 3561 1670.

○ 1. Which of the following metrics is not a solution of the 
Einstein Equations in vacuum?
■ Kerr metric
■ Reissner-Nordstrøm metric
■ Schwarzschild metric

○ 2. The Kerr solution is the one most relevant for 
astrophysical applications.
■ Correct
■ Inforrect

http://www.menti.com


3.11  Answers

● Go to www.menti.com & enter 3561 1670.

○ 1. Which of the following metrics is not a solution of the 
Einstein Equations in vacuum?
■ Kerr metric
■ Reissner-Nordstrøm metric
■ Schwarzschild metric

○ 2. The Kerr solution is the one most relevant for 
astrophysical applications.
■ Correct
■ Inforrect

http://www.menti.com


Summary I: 

Covered today: non-rotating BHs

● The SS solution of the vacuum EEs describes the nature of non- 
rotating BHs. The characteristics of the metric (apparent or real 
singularities) determine the spacetime.

● By constructing spacetime diagrams for different coordinate 
systems, we uncovered the existence of an event horizon and 
the fate of everything falling into a non-rotating black hole.

● A full study of the SS spacetime hinted at the (mathematical) 
existence of white holes and the possibility of wormholes.



Summary II: 

Covered today: charged/rotating BHs

● We then looked at charged BHs (although unlikely to exist in 
nature) characterised by the Reissner-Nordstrøm metric.

● The Kerr solution describes the (astrophysically relevant) case 
of rotating BHs. Rotation introduces new effects like frame 
dragging and specifically the concept of the ergosphere.

● This concludes our ‘classical’ GR discussion of BHs, as all solu- 
tions of the Einstein-Maxwell equations are described by three 
parameters (mass, charge, spin) due to the no-hair theorem.



Final impressions: 

Covered today: 
non-rotating/charged/

rotating BHs

● To recap, many of the concepts 
that we covered in today’s lecture 
are captured in this sketch.

Image credit: Victoria Grinberg
@vicgrinberg


