
Master UAB: NSs, BHs and GWs

Exercise from: Vanessa Graber (graber@ice.csic.es)

Due date: March 26th, 2023

Please submit your solutions electronically to the above email address by the given deadline. Note that to
receive full credit for the following questions, you must show your work, i.e., provide calculations and/or
explain your thinking. It is NOT necessary to type up your answers with LaTeX provided that your hand-
written and photographed (scanned) solutions are legible. Solutions for all questions will be provided online
after the submission deadline.

Geodesics in General Relativity

In our lectures, we saw that the paths of free test particles in General Relativity are governed by the affine
geodesic equation, generalising the concept of a ‘straight line’ to curved spacetime. The equation reads
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where u denotes an affine parameter and Γa
bc are the Christoffel symbols, which are symmetric in the lower

two indices. Note that this notation employs the Einstein summation convention. We will use this equation
to study the motion of particles around non-rotating black holes.

1. Non-affine geodesics (4 points)

While it is common to parametrise the timelike geodesic of a massive particle by the proper time τ , not all
parameters are affine parameters and satisfy the above equation. In particular, the coordinate time t is not
an affine parameter. To highlight the difference between the two times, starting from Eq. (1), show that the
equation of motion for a massive particle in terms of t = x0 (we use c = 1) is given by
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2. Equations of motion in Schwarzschild spacetime (5 points)

For the remainder, we focus on a specific type of solution to the vacuumEinsteinEquations, the Schwarzschild
metric, which characterises the curvature of spacetime around a non-rotating black hole. Using spherical
Schwarzschild coordinates xa = (t, r, θ, ϕ), the corresponding line element is

ds2 = (1− 2m/r)dt2 − (1− 2m/r)−1dr2 − r2(dθ2 + sin2θdϕ2), (3)

where m denotes the geometric mass. The non-zero Christoffel symbols are given by (I will not ask you to
calculate these for this exercise, but you should make sure that you understand how they are derived)
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Using Eq. (1), show that the equations of motion for a massive particle in the equatorial plane read
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ṙṫ, (4)
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r
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where a dot represents the derivative w.r.t. τ .
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3. Integrals of motion (2 points)

These equations of motion are characterised by two integrals of motion, i.e., quantities that stay constant
along the particle’s trajectory. Show that these two integrals of motion are given by

ϵ = (1− 2m/r)ṫ, l = r2ϕ̇, (7)

where ϵ and l are constants.

4. ‘Energy equation’ (3 points)

In analogy with Newtonian physics, the two integrals of motion are typically identified as the total energy
and angular momentum per unit mass of the particle, respectively. Using the Schwarzschild line element,
the relation ds = dτ , as well as the definitions of ϵ and l, derive the following ‘energy equation’ for a massive
particle trajectory in the Schwarzschild spacetime:
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5. A radially infalling particle (6 points)

Equation (8) is exactly the relation, we discussed in our BH Lecture when addressing that the Schwarzschild
radius rs = 2m is an apparent singularity and that a local observer would not notice crossing this spacetime
point. Only for a distant observer, measuring events in coordinate time t, does the Schwarzschild radius
appear special. A massive particle, which would be at rest at infinity, indeed reaches the physical singularity
at r = 0 in finite proper time τ0 when falling from r0 radially into a non-rotating black hole.

Show that this time is given by1
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1Hint: You might want to use the following result for a function f(x) and c, d = constant:
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