
Master UAB - High Energy Physics, Astrophysics and Cosmology

NSs, BHs and GWs

TOWARDS GENERAL RELATIVITY

Feb 24th, 2023

Vanessa Graber - graber@ice.csic.es



Literature suggestions:

● A First Course in General Relativity, B. Schutz
● Black Holes and Time Warps, K. Thorne
● Introducing Einstein’s Relativity, R. D’Inverno
● Gravitation, C. Misner, K. Thorne & J. Wheeler
● General Relativity, R. Wald
●

● Lecture Notes on General Relativity, S. M. Carroll, 
https://arxiv.org/pdf/gr-qc/9712019.pdf

● Geometry and physics of BH, É. Gourgoulhon, lecture notes, 
https://luth.obspm.fr/~luthier/gourgoulhon/bh16/

https://arxiv.org/pdf/gr-qc/9712019.pdf
https://luth.obspm.fr/~luthier/gourgoulhon/bh16/


Overview: 

Covered so far: NS EoS, transport properties, 
NS timing, magneto-thermal evolution

1. Special relativity
2. Tensor calculus



Overview: 

Covered so far: NS EoS, transport properties, 
NS timing, magneto-thermal evolution

1. Special relativity (SR)
2. Tensor calculus



1.1   SR - Newtonian gravity

● Until the 19th century, Newton’s theory of gravity had been 
successfully applied to many phenomena, e.g., Earth & Moon.

● He considered space & time as absolute: 
space exists independently of bodies within 
it; time exists without anyone measuring it.

● Their existence does not depend on physical 
events and the quantities are distinct.



1.2   SR - Galilean transformations

● In the Newtonian picture, an experimenting observer (clock + 
ruler) will recover the same laws of physics, if their local frame 
of reference is an inertial frame (no net forces acting).

● Inertial frames are at rest or travel with constant velocity 
relative to each other. They are connected via Galilean 
transformations:

● Velocities can be treated like vectors.



1.3   SR - Maxwell’s electromagnetism

● By 1870, Maxwell published a classical theory 
of electromagnetism: electricity, magnetism 
& light are manifestations of one phenomenon.

● These show that EM waves travel with (constant) speed, c.

● Wave phenomena were known to require propagation media, 
which was postulated as all-pervading ‘luminiferous aether’.



1.4   SR - incompatibility

● While Newtonian laws are Galilean invariant, Maxwell’s 
equations are not. Put differently, the speed of light is not 
additive and cannot depend on the source/observer velocity. 

● In 1887, the Michelson-Morley 
experiment (measuring the speed of 
light in two arms of an interferometre) 
suggested that the aether did not exist.

● To reconcile these issues, Einstein took a new approach at 
combining earlier results (in particular by Lorentz and 
Poincaré) and published a Special Theory of Relativity.



1.5   Postulates of SR

● Einstein started by assuming that the following 
two postulates are valid without restrictions:

○ Principle of relativity: laws of physics 
are identical in inertial frames; all inertial 
frames are equivalent.

○ Constancy of c: speed of light in vacuum 
is the same for all observers, independent 
of the relative motion of the source.

● This implies that Newtonian gravity cannot always be valid. 
It has to be adjusted for large velocities or strong gravity.

https://en.wikipedia.org/wiki/Vacuum


1.6   SR - Lorentz transformations

● The SR postulates are equivalent to the statement that the laws 
of physics are invariant under Lorentz transformations.

● For an event with coordinates (t, x) in a reference frame S, and 
coordinates (t’, x’) in S’ moving with v relative to S, we have

Ɣ is the so-called Lorentz factor. The inverse transformation:



1.7   SR - a four-dimensional world

● Whereas absolute time in Newtonian physics remains invariant 
under a Galilean transformation, Lorentz transformations 
mix space and time. The two are no longer separate.

● In special relativity, time and space merge into a four-dimen- 
sional continuum (a so-called manifold) named spacetime.

● The interval between two events (t, x, y, z) and (t+dt, x+dx, 
y+dy, z+dz) that is invariant under Lorentz transformations is

Minkowski spacetime



1.8  Questions

● Go to www.menti.com & enter 3821 5622.

○ 1. In a Newtonian picture can velocities be added and 
subtracted like vectors?
■ Yes
■ No

○ 2. Which of the following no longer holds universally in SR?
■ Principle of relativity
■ Newtonian gravity
■ Constancy of speed of light

http://www.menti.com
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1.9  Exercise

● Show that ds2 in one spatial dimension is invariant under the 
(infinitesimal) Lorentz transformation, i.e., ds2 is independent 
of the frame it is measured in. Use the following:



1.9  Exercise

● Answer:



1.10   SR - light cone

● We can distinguish 3 different cases:
○ ds2>0: two events separated by  

more time than space - timelike.
○ ds2<0: two events separated by  

more space than time - spacelike.
○ ds2=0: two events are lightlike   

separated, and |dx/dt|=c.

● These are used to construct spacetime 
diagrams / light cones to illustrate 
past, future, elsewhere & causality.



1.11   SR - simultaneous or not?

● Because c is constant all inertial observers will construct the 
same light cone. Past and future events keep that property.

● The situation is different for spacelike 
separated events: consider three 
events (A, B, C) that happen simul- 
taneously for an observer with v=0.

● An observer with v≠0 will disagree. 
For v=0.3c, the events happen in the 
order (C, B, A).



1.12   SR - measuring time & length

● Consider a clock at rest in a rest frame S that measures two 
events (t, x) and (t+T, x). In a frame S’ moving with v, we find

○ Time dilation: time between events is not invariant but 
depends on the observers’ speed. Moving clocks go slower!

● Consider a ruler of length Δx at rest and aligned along x in S. 
Measuring its length in S’ gives

○ Length contraction: Moving rulers are shorter!



1.13   SR - Doppler effect (DE)

● The classical Doppler effect arises when the source or receiver 
move relative to each other and in a medium. In SR, we don’t 
need the medium as a reference but account for time dilation.

● In the source frame S for the receiver moving away with v>0:

Longitudinal DE

● SR also predicts a transverse DE. If the 
receiver sees the source 
at its closest point:



1.14   SR - relativistic mechanics

● Based on what we now know, Newtonian mechanics can be 
modified to incorporate objects moving with speeds close to c:

○ Relativistic mass differs from rest mass:

○ Energy and momentum are also adjusted and obey a 
relativistic energy-momentum relation:

○ For (quantised) photons, we have: 



1.15  Questions

● Go to www.menti.com & enter 1341 6537.

○ 3. When the separation between two events is given by 
ds2<0, they are characterised by what?
■ Lightlike separation
■ Timelike separation
■ Spacelike separation

○ 4. Is there a classical transverse Doppler effect?
■ Yes
■ No
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Overview: 

Covered so far: special relativity

1. Special relativity
2. Tensor calculus (TC)



2.1   TC - manifolds

● So far we have looked at SR from a phenomenological point of 
view. To simplify the calculations, fully appreciate the theory 
and make the transition to GR, we require tensor algebra.

● In the following, we define tensors in n dimensions as objects 
on a geometric construct called a manifold. We won’t go into 
further detail on the topological properties but assume that:

○ A n-dimensional manifold M is a set of points, where each 
point is described by a set of coordinates (x1, x2, ... , xn).

○ The neighbourhood of each point on the manifold can be 
locally mapped to a n-dimensional Euclidean space.



2.2   TC - coordinate patches

● A manifold cannot always be covered by a single one-to-one 
correspondence between the points and the coordinates. 
Instead, we define coordinate systems for multiple coordinate 
patches on M that overlap. 

● Coordinate transfor- 
mations are used to get 
from one patch to another.

● Behaviour of geometric 
quantities under transfor- 
mation is central to GR.



2.3   TC - coordinate transformations

● A coordinate transformation implies that we passively assign 
a point with (x1, x2, ... , xn) the new coordinates (x’1, x’2, ... , x’n):

where fs are single-valued continuous differentiable functions.

● The total differential of each n of the new coordinates is then



2.4   TC - summation convention

● To write expressions in compact form, the Einstein summa- 
tion convention is often used. It implies summation over the 
dimension of the manifold for repeated / dummy indices:

● The Kronecker delta is important for partial differentiation:



2.5   TC - contravariant vector

● A key concept of TC is to define geometric quantities according 
to their behaviour under a coordinate transformation.

● A contravariant vector (tensor of order 1) is a set of n 
quantities (denoted as Xa in the xa-coordinate system) that 
transforms in the following way under a change of coordinates:

● Example: tangent vector to a curve 
xa = xa (u), parameterised by u. 



2.6  Exercise

● Show that the tangent vector ta indeed transforms like a 
contravariant tensor of order 1. Use the following:



2.6  Exercise

● Answer:



2.7   TC - contravariant tensor & scalar

● We can generalise the contravariant vector definition to tensors 
of higher order. A contravariant tensor of order 2 is a set 
of n2 quantities (denoted as Xab in xa-coordinate system) that 
transforms in the following way under a change of coordinates:

Example: product XaYb.

● A tensor of order 0 is a scalar and invariant, i.e., we have

Examples: mass and charge.



2.8   TC - covariant tensors

● A covariant tensor of order 1 is a set of n quantities (deno- 
ted as Xa in the xa-coordinate system) that transforms as 

● This involves the inverse transformation matrix ∂xb/∂x’a 

and can be generalised to higher orders and mixed tensors.

● Example: the 
gradient vector    
of a scalar



2.9   TC - tensor operations

● Two tensors of same type can be added/subtracted/multiplied:

● We distinguish symmetric and antisymmetric tensors:

● We can contract a tensor using the Kronecker delta:



2.10  Questions

● Go to www.menti.com & enter 8812 7233.

○ 1. What is the result of the scalar product X’aY’a?
■ Contravariant tensor
■ Covariant tensor
■ Scalar

○ 2. Let’s assume that two tensors satisfy Xab=Yab in one 
coordinate system. Are they equal in all other systems?
■ Yes
■ No

http://www.menti.com
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2.11   TC - differentiation

● Question: Does differentiation transform tensors into tensors?

● For a scalar field ɸ=ɸ(xa), we already 
mentioned that its ordinary derivatives 
are components of a covariant tensor:

● What happens if we differentiate a contravariant vector field Xa?
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2.12   TC - covariant derivative

● We can rewrite this by defining a new quantity Aa
cf

● This suggests that we might be able to define a covariant 
derivative in the following way:



2.13   TC - affine connections

● For the covariant derivative to transform like a tensor, the 
n3 quantities Γa

bc have to satisfy the following condition

● The Γa
bc are called affine connections. Because of the second, 

inhomogeneous term in the above transformation law, these 
connections are not tensors. Their role is to compensate for 
the inhomogeneous term in the vector field’s partial derivative. 



2.14   TC - parallel transport

● Let’s consider a contravariant vector field 
Xa evaluated at point P and a second point 
Q displaced by δxa. At Q, we can evaluate

● δXa is not a tensor. We construct δXa so that δXa - δXa trans- 
forms like a tensor. This requires 

● Connections allow us to transport vectors across manifolds. 



2.15   TC - curvature tensor

● Imagine that we start at P and parallel 
transport a vector Xa along a closed 
path. For each path segment, we apply 
the previous formula to obtain the 
total change of the vector at P:

● The quantity Ra
bcd is the curvature tensor



2.16   TC - affine geodesics

● Let’s assume that a curve is parameterised by u, i.e., xa = xa (u). 
Let ta be the tangent vector at a point P. If we parallel 
transport the vector ta along xa (u), then it will generally not     
be tangent at other points along the curve.

● If the transported vector IS tangent at any point, the curve is a 
so-called geodesic curve of our manifold and given by

● Geodesics represent the shortest path connecting two points.



2.17   TC - metric tensor

● Consider two neighbouring points xa and xa + dxa. If the 
infinitesimal distance between these points ds satisfies

where gab is a symmetric covariant tensor field of order 2, 
then we call gab a metric. A manifold that has such a metric is 
called Riemannian. ds2 is also known as the line element. 

● If g=det(gab)≠0, the inverse gab is defined by 
gab is the contravariant order 2 metric tensor.



2.18   TC - metric connections

● We can use these two tensors to raise/lower indices (two 
operations that are inverse to each other)

● A Riemannian manifold has special connections, which are 
called Christoffel symbols and related to the metric as

● The metric connections are symmetric Γa
bc=Γa

cb and 



2.19   TC - Riemann tensor

● For a Riemannian metric, the curvature tensor is called the 
Riemann tensor and depends on the metric and its first and 
second derivatives. It satisfies a number of properties, incl.

● We call a metric flat, when there exists a coordinate system in 
which it reduces to diagonal form with entries 土1 everywhere. 
Because gab is then constant, Γa

bc and Ra
bcd  are zero.



2.20   TC - Ricci & Einstein tensor

● From the Riemann tensor, we construct several more important 
tensors. Contracting once gives the symmetric Ricci tensor

● A final contraction defines the 
Ricci (curvature) scalar:

● These two define the symmetric Einstein tensor:



2.21  Questions

● Go to www.menti.com & enter 1252 0964.

○ 3. We parallel transport a vector around a closed path and 
recover exactly the same vector. It is true that … 
■ the manifold is flat.
■ the Riemann tensor vanishes.
■ the total change of the vector is zero.

○ 4. A geodesic is the shortest path between two points.
■ Yes
■ No

http://www.menti.com
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Summary I: 

Covered today: special relativity, tensor calculus

● Einstein combined earlier results to develop a new theory of 
(special) relativity based on two postulates: i) all inertial 
frames are equivalent, ii) the speed of light is constant.

● In SR, the laws of physics are invariant under Lorentz trans- 
formations, which couples space & time into spacetime.

● Special relativity extends Newtonian physics to those cases 
where speeds are close to that of light (but gravity negligible).



Summary II: 

Covered today: special relativity, tensor calculus

● To simplify the SR formalism and eventually appreciate the 
beauty of GR, we make use of tensor calculus. We will use 
tensors to write equations in coordinate independent form.

● Tensors are objects satisfying certain properties under coordi- 
nate transformations. We distinguish scalars (mass), con- 
travariant (tangent vector) and covariant (gradient) tensors.

● Using the formalism, we can encode information about a mani- 
fold’s curvature and determine geodesics and distances.


