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e Radio Astronomy

Cassiopeia A supernova remnant
(credit: NASA/CXC/SAQ)



The radio window

e Radio astronomy observes the Sky over many orders of magnitude from ~ 10
MHz (10m) to ~1THz (Imm) at the low-frequency end of the EM spectrum.
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The radio window

e Radio astronomy observes the Sky over many orders of magnitude from ~ 10
MHz (10m) to ~1THz (Imm) at the low-frequency end of the EM spectrum.

e Asthe Earth's
atmosphere is
transparent to
radio waves, we
perform radio
astronomy from
Earth’'s surface.

e Since the1930’s,
radio astronomers
have been given
access to an often
hidden Universe.
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Science in the radio band |

e Nearly everything in the Universe
(e.g., stars, planets, galaxies,
clouds of dust, gas molecules and
the CMB) emits radio waves due
to a variety of emission processes.

e Because radio waves can
penetrate dust and gas, many
sources that are invisible at other
wavelengths can be observed at
radio frequencies.

e Radio astronomy has led to many
major discoveries such as neutron
stars and Fast Radio Bursts (FRBSs).
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Science in the radio band |l

e Today, radio astronomy covers an incredible breadth of science from the
smallest (solar system) to the largest (cosmological) astronomical scales.

Epoch of Extragalactic ~ Extragalactic Gravitational High Energy

Cosmology Cradle of Life Reionization Continuum Spectral Line Waves Cosmic Particles
. v --

55 Miga B
Solar, Heliospheric
& lonospheric
HI Galaxy Science Magnetism Our Galaxy Pulsars Physics Transients VLBI

The different Science Working Groups of the Square Kilometre Array Observatory. Credit: SKAO
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Radio observatories

Very Large
Array (VLA).
Credit:

NRAO

e FEveryradio telescope is essentially an
antenna with a receiver. The shape and
size depend on the frequencies and

objects we want to observe.
LOFAR.

Credit;

CHIME. Credit: ASTRON
CHIME
Collaboration

MWA. Credit;
N. Hurley-
Walker

Arecibo. Credit: H. Schweiker/
WIYN/NOAO/AURA/NSF
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Square Kilometre Array Observatory

e After many decades of planning, the
radio community is (finally) seeing
the construction of the Square
Kilometre Array Observatory (SKAO).

e Headquartered at Jodrell Bank, SKAO
Is an intergovernmental organisation
to build and operate the world’s two
largest radio telescopes.

Construction ~ Commissioning  Science verification  Cycle 0

2025 2025 2027 - 2029 2030

2029 - 2031 2032
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Challenges in radio astronomy

e Radio astronomy is generally facing two major challenges: radio frequency
interference (RFI) and huge data volumes that cannot be analysed by hand.

Telescope
boundary
Large area PERTH

response data I Data
streams ' M ," "y Products
Pb/ 789?:: 78 Toss : ~700 PB/yr
2 Pb/s /s 3 5 78To/s S
A

9
& SKA

180 PB raw data/day reduced to 2 PB science data/day by SDP Reg ional
Centre

Network

Beamformed data stream
for sky patches

f csp f

20 Tb/s M

8.9Tb/s 8
A

CAPE TOWN

S ROYAL

HOLLOWAY
UNIVERSITY
OF LONDON



Outline

e ML in Radio Astronomy

Cassiopeia A supernova remnant
(credit: NASA/CXC/SAQ)



Machine learning

e Several aspects of machine learning (ML) are relevant for radio astronomy:

Scalability to huge datasets R
Artificial intelligence o .
Real-time processing
Programmes that sense,

reasons, act and adapt and decision making

Pattern recognition in
complex data

Automation and
increased efficiency

Ability to generalise
to unknown data

Better accuracy than
humans (under certain

Flexible across conditions)

different domains
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Some very recent examples

e The application range of ML for
radio aStrOﬂOmy has increased Advancing RFI-Detection in Radio Astronomy with Liquid State Machines
massively in the past 5 yea rs. A Authors: Nicholas ] Pritchard, Andreas Wicenec, Mohammed Bennamoun, Richard Dodson
few recent examples from the
arXiv include:

arXiv:2504.09796 [pdf, other] astro-ph.IM

arXiv:2506.11715 [pdf, ps, other] @Bl 10.1051/0004-6361/202554794

Simulating realistic radio continuum survey maps with diffusion models
Authors: Tobias Vicanek Martinez, Henrik W. Edler, Marcus Bruggen

arXiv:2507.21270 [pdf, ps, other] cs.LG

Generative imaging for radio interferometry with fast uncertainty quantification
Authors: Matthijs Mars, Tobias I. Liaudat, Jessica J. Whitney, Marta M. Betcke, Jason D. McEwen

nras/ stafa67

10.1093/m - D
- (gl nerativ
15559 [pdf, other] ing Deep Neural Networks and Ge

' A Data usin

.. iaan-paul Kneib
Tolley, Shreyam parth Kri arXiv:2506.16138 [pdf, ps, other]

Radio Galaxy Zoo: EMU -- paving the way for EMU cataloging using Al and citizen science
Authors: Hongming Tang, Eleni Vardoulaki, RGZ EMU collaboration

ata Augmentation

arXivi2411

Radio Hal .
s: Ashutosh K. Mis

o Detection in MW
hra, Emma

Author

arXiv:2508.01596 [pdf, ps, other]

Identifying Radio Active Galactic Nuclei with Machine Learning and Large-Area Surveys
Authors: Xu-Liang Fan, Jie Li
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ML applications for radio astronomy

e ML algorithms have been, e.g., applied to the following types of topics:

o Telescope optimisation to make the best use of limited
resources and manage competing interests.

o Real-time processing to reduce massive data volumes.

o Interference mitigation, e.g., via RFI classification or
noise reduction to improve data quality.

o Improve imaging quality for interferometric techniques
across multiple telescopes.

o Source finding and automated classification of millions

of sources into different classes to build catalogues
(potentially combined with citizen science).

o Discovery of rare and/or new transient events in real
time and efficient follow-up of these phenomena.

o Learn more about radio sources to better understand
their unknown properties & drive scientific discovery.
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Outline

e Neutron Stars

Cassiopeia A supernova remnant
(credit: NASA/CXC/SAQ)



Neutron-star formation

e Neutron stars are one of three
types of compact remnants,
created during the final stages
of stellar evolution.

mass: 1.2 - 2.1 Mﬂ
radius: 9 -15 km

density: 10 g/cm?

B-field: 10°-10""G
rotation:
10ms - 10s

e \When a massive star of 8 - 25
solar masses runs out of fuel,
it collapses under its own
gravitational attraction and
explodes in a supernova.

e During the collapse, electron
capture processes (p+e > n+wv )
produce (a lot of) neutrons.
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The neutron-star zoo

e Pulsars are very precise clocks and we
time their pulses to measure rotation
periods P and derivatives P.

e \We now observe neutron stars as pulsars
across the electromagnetic spectrum.

logyo Period derivati

~ 3,500 pulsars are known to date

logu Period [ | ¢ Grouping neutron stars in the Pl5-plane
according to their observed properties
serves as a diagnostic tool to identify
different neutron-star classes.
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The neutron-star zoo

e Pulsars are very precise clocks and we
time their pulses to measure rotation
periods P and derivatives P.

e \We now observe neutron stars as pulsars
across the electromagnetic spectrum.
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~ 3,500 pulsars are known to date

Focus on the isolated
radio-pulsar population
logs Period [5 | ¢ Grouping neutron stars in the Pl5-plane
according to their observed properties
serves as a diagnostic tool to identify
different neutron-star classes.
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Population synthesis: general idea

e \We can estimate the total number of neutron stars in our Galaxy

CC supernova rate: x Galaxy age: e NS number:
~ 2 per century ~13.6 billion years — ~2.8x108

e \We only detect a very small fraction of all neutron stars. Population synthesis
bridges this gap focusing on the full population of neutron stars

model birth evolve apply filters to compare mock
properties with properties mimic simulations to

Monte-Carlo forward in observational observations to
approach time biases/limits constrain input

{
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Goals

e Population synthesis allows us to
constrain the natal properties of
neutron stars and their birth rates.

e Thisis for examp|e relevant for: XDINSs  Magnetars ~ Total ~ CCSN rate
: . 28405 5673 21+10 t12 1.9+ 1.1

Massive star evolution 1402 28716 21410 032 0 19411
Gamma-ray bursts 11+£02 2247 21+10 2 5gh). 19ETd

Fast-radio bursts 1.6+03 32723 21+10 2 30 19+ 1.1
Peculiar supernovae 11402 2217 21410 2 57t 19+11

O O O O

e \We can also learn about evolutionary links between different neutron-star
classes . This is important because estimates for the
Galactic core-collapse supernova rate are insufficient for to explain the
independent formation of different classes of pulsars
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Dynamical evolution |

e Neutron stars are born in star-forming
regions, i.e, in the Galactic disk along the
Milky Way's spiral arms, and receive
kicks during the supernova explosions.

e We make the following assumptions:

o Electron-density model
+ rigid rotation with T = 250 Myr.

o Exponential disk with scale height h_
= 0.18 kpc

o Single-component Maxwell klck-
velocity distribution with dispersion
o, =265 km/s

o Galactic potential

Tae
CEER
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Dynamical evolution li

® For our Galactic model ®, ., we evolve the stars’ position & velocity by solving
Newtonian equations of motion in cylindrical galactocentric coordinates:

& T
) )
& o
iy <

time = 0 kyr time = 0 kyr
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Magneto-rotational evolution |

The neutron-star magnetosphere exerts a torque
onto the star. This causes spin-down and
alignment of the magnetic and rotation axes.

Neutron star magnetic fields decay due to the
Hall effect and Ohmic dissipation in the outer
stellar layer (crust)

We make the following assumptions:

o Initial periods follow a log-normal
with y,and o,

o Initial fields follow a log-normal
with y;and o, Here, we vary the five

o Above 1 ~10° yr, field decay follows uncertain parameters
a power-law with B(t) ~ B, (1 + t/1)% Mps Mg Op, 0 and a.




Magneto-rotational evolution Il

e To model the magneto-rotational
evolution, we numerically solve two
coupled ordinary differential
equations for the period and the
misalignment angle

s 5
g ©
e We use results from 2D magneto- £ &
thermal simulations to determine g :§
the evolution of the magnetic field 2, ;E;
below 10° yr A =
time = 10 kyr \\\\““‘
e This allows us to follow the stars’' P 107 10'

Spin period [s]

and P evolution in the PP-plane.
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Three pulsar surveys

e After modelling the pulsars’ brightness
in radio, we count them as detected if
they surpass a certain threshold.

e We then compare our simulated
populations with three surveys from ———
Murriyang (the Parkes Radio Telescope): ol 0

o Parkes Multibeam Pulsar Survey
(PMPS): 1,009 PSRs

o Swinburne Parkes Multibeam
Pulsar Survey (SMPS): 218 PSRs

o High Time Resolution Universe
Survey (HTRU): 7,023 PSRs

Period derivative P

Period P [s]

ROYAL

HOLLOWAY
UNIVERSITY
OF LONDON



Three pulsar surveys

After modelling the pulsars’ brightness
in radio, we count them as detected if
they surpass a certain threshold.

o Parkes Multibeam Pulsar Survey
(PMPS): 1,009 PSRs
o Swinburne Parkes Multibeam
Pulsar Survey (SMPS): 218 PSRs
o High Time Resolution Universe
Survey (HTRU): 1,023 PSRs U= o1 10!
Period P [s]

Period derivative



Outline

e SBI for Pulsar Populations




Comparing models and data

e Comparing observations to models and constraining
regions of the parameter space that are most probable
given the data is fundamental to many fields of science.

e Pulsar population synthesis is complex and has many free parameters. To
compare synthetic simulations with observations, people have

o Randomly sampled and then optimised ‘by eye’
o Compared distributions of individual parameters using x?>- and KS-tests

o Used annealing methods for optimisation
o Performed Bayesian inference for simplified models

These methods do not scale well and are difficult to use with

the multi-dimensional data produced in population synthesis.




Statistical inference

e To obtain probable regions of parameter spaces that explain our data (i.e,,

we do not need exact point estimates), we perform statistical inference.
e Thisis where Bayesian inference comes in: based on some prior knowledge r
(8), a stochastic model and some observation x, we want to infer the most

likely distribution P(8|x) for our model parameters 8 given the data x. This is
encoded in Bayes' Theorem:

prior 7 likelihood £ . Fo.r comglex sifnula‘Eors, ’Eh.e
AN~ likelihood is defined implicitly

P0]7) = P() P(x|0) and often intractable. This is

~— 73(3;) overcome with simulation-based
posterior S~ (likelihood-free) inference (see c.g.

evidence

Cranmer et al., 2020).
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Simulation-based inference |

e To perform Bayesian inference for any kind of (stochastic) forward model
(e.g. those specified by simulators), we use the following approach:

1. sample 6; . 2. run simulator for 6;

from prior w(0) R to produce observations
fori=1,...,N x; ~ p(z|0;)

4. use density estimator to 3. train a conditional
find approximate posterior density estimator ¢,(6|x)
for empirical data, i.e., on simulated data to

p(B|xo) ~ qp(8]x0) predict parameters
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Simulation-based inference |l

e Different approaches (all relying on deep learning) exist to learn a probabilis-
tic association between the simulated data and the underlying parameters.
These algorithms essentially focus on different pieces of Bayes' theorem:

o Neural Posterior Estimation (NPE)
o Neural Likelihood Estimation (NLE)
o Neural Ratio Estimation (NRE)

We focus on NPE. This allows us to directly learn the posterior

distribution. In contrast, NLE and NRE need an extra (potentially
time consuming) MCMC sampling step to construct a posterior.

e All methods exist in sequential form (SNPE, SNLE, SNRE), which adds a fifth
step to workflow. Instead of sampling from the prior, we adaptively generate
simulations from the posterior. This typically requires fewer simulations.
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Simulation-based inference |l

To perform Bayesian inference for any kind of (stochastic) forward model
(e.g. those specified by simulators), we use the following approach:

1. sample 6; 2. run simulator for 6;
from prior 7(0) > - to produce observations
fori=1,...,N x; ~ p(x|6;)

5. generate simulations

adaptively

4. use density estimator to 3. train a conditional

find approximate posterior density estimator ¢,(6|x)
for empirical data, i.e., on simulated data to

p(B|xo) ~ qp(8]x0) predict parameters




Neural networks (NNs)

Hidden layers e A neural network is composed of layers, which
Input represent stacks of neurons (objects holding a
Output single numerical value). Each layer encodes a
simplified representation of the input data.

e A deep-learning algorithm learns more and
more about the input as the data is passed
through successive hidden network layers.

e The Multilayer Perceptron is the simplest set-up
where input and output are fully connected. In a
convolutional NN, not all nodes are connected,
which reduces the number of trainable para-
meters and allows more flexibility for training.

x5
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Neural networks (NNs)

Hidden layers e A neural network is composed of layers, which
Input represent stacks of neurons (objects holding a
Output single numerical value). Each layer encodes a
simplified representation of the input data.

e A deep-learning algorithm learns more and
more about the input as the data is passed
through successive hidden network layers.

e The Multilayer Perceptron is the simplest set-up
where input and output are fully connected. In a
convolutional NN, not all nodes are connected,
which reduces the number of trainable para-
meters and allows more flexibility for training
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Convolutional and max pooling layers

e Besides fully connected layers, CNNs are composed of two types of filters:

Convolutional filters Max-pooling layers

These filters recognise features, These filters extract the most
such as detecting edges of an relevant features, helping to
object in an image. speed up the training process.




Varying the five
parameters W, U, ©
oy and a, we
e With our complex population synthesis simulator, simulate 360,000
we fix the dynamics to a fiducial model and focus synthetic pulsar
on the magneto-rotational evolution. populations over 6

SBI for radio pulsars
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Test sample 1: PMPS

SBI for radio pulsars

With our complex population synthesis simulator,
we fix the dynamics to a fiducial model and focus
on the magneto-rotational evolution. betiod P f] et

|
g
>
=
+
>
=
=
<]
—
T
—
=)
Q
=
=
A

From our simulated populations, we generate summary
statistics: density maps for three surveys in the PP-plane.
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Test sample 1: PMPS

SBI for radio pulsars

With our complex population synthesis simulator,
we fix the dynamics to a fiducial model and focus
on the magneto-rotational evolution.  Paod Pl s

|
g
>
=
+
>
=
=
<]
—
T
—
=)
Q
=
j=
A

From our simulated populations, we generate summary
statistics: density maps for three surveys in the PP-plane.

Build on PyTorch package sbi

. . . Posterior
Convolutional Neural Mixture Density approximation
Network Network ppc

2x32x3 /_—/% " ———— qF(“’):; aN(0| u,2)

16 X16 X32 - 1 r ‘U/ ll‘lc(x)

Flatten

| : 2 (x) |

Conv2D 3'*3+>’64
3x3x32
+ Latent > parameters

Maxpool Gaussian mixture

Maxpool

representation



Posterior results

e \We use an ensemble of networks to
infer on the observed population:

Hiog = 13.10f8f?§, Hiogp = — 1.00f8j§?,

— +0.33
OlogB = 045500 ologp = 0.387(13,

2005
_ +0.65
Atae = —1.80 (7.

= —1.80}

; &
o Initial B-field parameters are N
narrower than initial P posteriors \ é}

(expected due to degeneracies).

o Posteriors for late-time evolution
do not overlap causing bimodality
(hinting at missing info/physics).
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Period derivative P [ss7Y
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Sequential SBI for radio pulsars

We have now implemented a sequential

workflow that iteratively
produces simulations as needed.

This method plus adding radio flux infor-
mation allows us to infer 7 parameters
with only 10,000 simulations in a few days.

Observed PMPS
1 SMPS
red HTRU RFae
2 2" 3

Simulated PMPS
*  Simulated SMPS .
Simula U P

Period derivative P [ss7]

1071 10! : 107! 10
Period P [s] Period P [s]

Mg p = —0.677(53,

density shows number of NSs

density shows average flux per bin

Hlog B = 13-09t8:%27

+0.04

_ +0.16
Olate = _0-88_0,177

Mlog Lo = 26. 171—8%27

+0.33

+0.22

0.10
a=0.681)5.




Sequential SBI for radio pulsars

density shows number of NSs

e \We have now implemented a sequential
workflow that iteratively
ations as needed.

Matoy
r . S
. l'o?er ties jn aw
IS will op ay

Y get
°re radio pulsal:: ey

Mog B = 13.U5Z55S
_ +0.04

Olog B = 0.905 04,
Qlate = —0.887016

— _0.677033 late — :09_0.17>

Hlog P = —U.0/(_q 53,

— 2 17+0.19

+0.22 Mlog Lo = 40.11_¢ 16,

Tlog P = 0.557¢ 57,
o, a = 0.68"0 5.

Period P [s] Period P [s]
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e Summary
Cassiopeia A supernova remnant
(credit: NASA/CXC/SAQ)



Summary

pE—— i e Radio astronomy e Key challenges in radio
Hidden layers WL IR i . .
Input REr/ { allows a unique view astronomy (RFI, large
‘ into astrophysical data volumes) can lend
phenomena otherwise themselves to be solved

hidden from view. by ML algorithmes.

e Simulators in astrono- e Using flexible neural
my are very complex, networks to estimate
making standard posteriors is an exciting
Bayesian inference new way to learn about
often impossible. unknown astrophysics.
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