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The radio window

● Radio astronomy observes the Sky over many orders of magnitude from ~ 10 
MHz (10m) to ~ 1 THz (1mm) at the low-frequency end of the EM spectrum.

● As the Earth’s 
atmosphere is 
transparent to 
radio waves, we 
perform radio 
astronomy from 
Earth’s surface.

● Since the 1930’s, 
radio astronomers 
have been given 
access to an often 
hidden Universe.EM spectrum and atmospheric opaqueness. Credit: NASA 
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Science in the radio band I

● Nearly everything in the Universe 
(e.g., stars, planets, galaxies, 
clouds of dust, gas molecules and 
the CMB) emits radio waves due 
to a variety of emission processes.

● Because radio waves can 
penetrate dust and gas, many 
sources that are invisible at other 
wavelengths can be observed at 
radio frequencies.

● Radio astronomy has led to many 
major discoveries such as neutron 
stars and Fast Radio Bursts (FRBs). Jocelyn Bell Burnell and the first pulsar 

discovery. Credit: Martin Burnell/NRAO
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Pulsar lighthouse radiation. 
Credit: J. Christiansen



Science in the radio band II

● Today, radio astronomy covers an incredible breadth of science from the 
smallest (solar system) to the largest (cosmological) astronomical scales.
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The different Science Working Groups of the Square Kilometre Array Observatory. Credit: SKAO



Radio observatories

● Every radio telescope is essentially an 
antenna with a receiver. The shape and 
size depend on the frequencies and 
objects we want to observe. 

Very Large 
Array (VLA). 

Credit: 
NRAO
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Arecibo. Credit: H. Schweiker/ 
WIYN/NOAO/AURA/NSF

CHIME. Credit: 
CHIME 

Collaboration

MWA. Credit: 
N. Hurley- 

Walker

LOFAR. 
Credit: 

ASTRON



Square Kilometre Array Observatory

● After many decades of planning, the 
radio community is (finally) seeing 
the construction of the Square 
Kilometre Array Observatory (SKAO).

● Headquartered at Jodrell Bank, SKAO 
is an intergovernmental organisation 
to build and operate the world’s two 
largest radio telescopes. 

SKA-Mid telescopes in South Africa and 
SKA-Low stations in Australia. Credit: SKAO
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Construction      Commissioning      Science verification      Cycle 0
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     2025                     soon                     2029 - 2031              2032



Challenges in radio astronomy

● Radio astronomy is generally facing two major challenges: radio frequency 
interference (RFI) and huge data volumes that cannot be analysed by hand.

Picking out astronomical signals 
amongst human made radio signals, 
instrument noise, etc. is very difficult.
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Radio telescopes produce vasts amount of 
data that need to be sifted and distributed 

to the end users. Adapted from SKAO.

Beamformed data stream
for sky patches

CAPE TOWN

Large area 
response data 

streams

PERTH

CSP: Central Signal Processors; SDP: Science Data Processors

Telescope 
boundary

180 PB raw data/day reduced to 2 PB science data/day by SDP
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Machine learning

● Several aspects of machine learning (ML) are relevant for radio astronomy: 
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Artificial intelligence

Programmes that sense, 
reasons, act and adapt

Machine learning

Algorithms that improve as 
they get access to more 

data over time

Deep 
learning

Subset of ML in 
which neural 

networks learn 
from vast 
datasets

Scalability to huge datasets

Pattern recognition in 
complex data

Ability to generalise 
to unknown data

Real-time processing 
and decision making

Automation and 
increased efficiency

Flexible across 
different domains

Better accuracy than 
humans (under certain 

conditions)



Some very recent examples

● The application range of ML for 
radio astronomy has increased 
massively in the past 5 years. A 
few recent examples from the 
arXiv include:
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ML applications for radio astronomy

● ML algorithms have been, e.g., applied to the following types of topics:

○ Telescope optimisation to make the best use of limited 
resources and manage competing interests.

○ Real-time processing to reduce massive data volumes.
○ Interference mitigation, e.g., via RFI classification or    

noise reduction to improve data quality.
○ Improve imaging quality for interferometric techniques 

across multiple telescopes.
○ Source finding and automated classification of millions 

of sources into different classes to build catalogues 
(potentially combined with citizen science).

○ Discovery of rare and/or new transient events in real   
time and efficient follow-up of these phenomena.

○ Learn more about radio sources to better understand 
their unknown properties & drive scientific discovery.
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Neutron-star formation

● Neutron stars are one of three 
types of compact remnants, 
created during the final stages 
of stellar evolution.

● When a massive star of 8 - 25 
solar masses runs out of fuel, 
it collapses under its own 
gravitational attraction and 
explodes in a supernova.

● During the collapse, electron 
capture processes (p + e- → n + 𝜈e) 
produce (a lot of) neutrons. Snapshot of a 3D core-collapse 

supernova simulation (Mösta et al., 2014)

mass:  1.2 - 2.1 Mⵙ

radius:  9 - 15 km

density:  1015 g/cm3
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B-field:  109 - 1015 G

rotation:  
10ms - 10s



The neutron-star zoo

● Pulsars are very precise clocks and we 
time their pulses to measure rotation 
periods P and derivatives P.

● We now observe neutron stars as pulsars 
across the electromagnetic spectrum.

● Grouping neutron stars in the PP-plane 
according to their observed properties 
serves as a diagnostic tool to identify 
different neutron-star classes.

Period period-derivative plane for the pulsar 
population. Data taken from the ATNF Pulsar 

Catalogue (Manchester et al., 2005)

~ 3,500 pulsars are known to date
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The neutron-star zoo

● Pulsars are very precise clocks and we 
time their pulses to measure rotation 
periods P and derivatives P.

● We now observe neutron stars as pulsars 
across the electromagnetic spectrum.

\

● Grouping neutron stars in the PP-plane 
according to their observed properties 
serves as a diagnostic tool to identify 
different neutron-star classes.

Period period-derivative plane for the pulsar 
population. Data taken from the ATNF Pulsar 

Catalogue (Manchester et al., 2005)

~ 3,500 pulsars are known to date
Focus on the isolated 

radio-pulsar population
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Population synthesis: general idea

● We can estimate the total number of neutron stars in our Galaxy

    ✕                        ＝

● We only detect a very small fraction of all neutron stars. Population synthesis 
bridges this gap focusing on the full population of neutron stars (e.g. Faucher- 
Giguère & Kaspi 2006, Lorimer et al. 2006, Gullón et al. 2014, Cieślar et al. 2020):

model birth 
properties with 

Monte-Carlo 
approach

apply filters to 
mimic 

observational 
biases/limits

compare mock 
simulations to 

observations to 
constrain input

evolve 
properties 
forward in 

time

CC supernova rate:
~ 2 per century

Galaxy age: 
~ 13.6 billion years

NS number:  
~ 2.8 x 108
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Goals

● Population synthesis allows us to 
constrain the natal properties of 
neutron stars and their birth rates. 

● This is for example relevant for:
○ Massive star evolution
○ Gamma-ray bursts
○ Fast-radio bursts
○ Peculiar supernovae

● We can also learn about evolutionary links between different neutron-star 
classes (e.g., Viganó et al., 2013). This is important because estimates for the 
Galactic core-collapse supernova rate are insufficient for to explain the 
independent formation of different classes of pulsars (Keane & Kramer, 2008).

Estimated Galactic 
core-collapse 

supernova rate and 
birth rates for 

different pulsar 
classes (Keane & 
Kramer, 2008).
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Dynamical evolution I 

● Neutron stars are born in star-forming 
regions, i.e., in the Galactic disk along the 
Milky Way’s spiral arms, and receive 
kicks during the supernova explosions.

●  We make the following assumptions:
○ Electron-density model (Yao et al., 

2017) + rigid rotation with T = 250 Myr.
○ Exponential disk with scale height hc 

= 0.18 kpc (Wainscoat et al., 1992).
○ Single-component Maxwell kick- 

velocity distribution with dispersion 
σk = 265 km/s (Hobbs et al., 2005).

○ Galactic potential (Marchetti et al., 2019).

Artistic 
illustration of 

the Milky 
Way (credit: 
NASA JPL)
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Dynamical evolution II 

● For our Galactic model ΦMW, we evolve the stars’ position & velocity by solving 
Newtonian equations of motion in cylindrical galactocentric coordinates:

Galactic 
evolution tracks 
for hc = 0.18 kpc, 

σ = 265 km/s.

Top view Side view
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Magneto-rotational evolution I 

● The neutron-star magnetosphere exerts a torque 
onto the star. This causes spin-down and 
alignment of the magnetic and rotation axes.

● Neutron star magnetic fields decay due to the 
Hall effect and Ohmic dissipation in the outer 
stellar layer (crust) (e.g., Viganó et al., 2013 & 2021).

● We make the following assumptions:
○ Initial periods follow a log-normal 

with μP and σP (Igoshev et al., 2022)
○ Initial fields follow a log-normal 

with μB and σB (Gullón et al., 2014)
○ Above τ ~ 106 yr, field decay follows 

a power-law with B(t) ~ B0 (1 + t/τ)α.

Here, we vary the five 
uncertain parameters 
μP, μB, σP, σB and α.
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Magneto-rotational evolution II 

● To model the magneto-rotational 
evolution, we numerically solve two 
coupled ordinary differential 
equations for the period and the 
misalignment angle (Aguilera et al., 
2008; Philippov et al. 2014). 

● We use results from 2D magneto- 
thermal simulations to determine 
the evolution of the magnetic field 
below 106 yr (Viganò et al. 2021).

● This allows us to follow the stars’ P 
and P evolution in the PP-plane.

PP evolution tracks for 
μP = -0.6 , σP = 0.3 , μB = 

13.25 and σB = 0.75.
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Three pulsar surveys

● After modelling the pulsars’ brightness  
in radio, we count them as detected if 
they surpass a certain threshold. 

● We then compare our simulated 
populations with three surveys from 
Murriyang (the Parkes Radio Telescope):

○ Parkes Multibeam Pulsar Survey 
(PMPS): 1,009 PSRs

○ Swinburne Parkes Multibeam 
Pulsar Survey (SMPS): 218 PSRs

○ High Time Resolution Universe 
Survey (HTRU): 1,023 PSRs
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Can we constrain birth properties by looking at a 

current snapshot of the pulsar population? 
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Comparing models and data

● Comparing observations to models and constraining 
regions of the parameter space that are most probable 
given the data is fundamental to many fields of science.

● Pulsar population synthesis is complex and has many free parameters. To 
compare synthetic simulations with observations, people have
○ Randomly sampled and then optimised ‘by eye’ (e.g., Gonthier et al., 2007)
○ Compared distributions of individual parameters using χ2- and KS-tests 

(e.g., Narayan & Ostriker, 1990; Faucher-Giguère & Kaspi, 2006)
○ Used annealing methods for optimisation (Gullón et al., 2014)
○ Performed Bayesian inference for simplified models (Cieślar et al., 2020)

These methods do not scale well and are difficult to use with 
the multi-dimensional data produced in population synthesis.

Vanessa.Graber@rhul.ac.uk 19



Statistical inference

● To obtain probable regions of parameter spaces that explain our data (i.e.,      
we do not need exact point estimates), we perform statistical inference.

● This is where Bayesian inference comes in: based on some prior knowledge π
(θ), a stochastic model and some observation x, we want  to infer the most 
likely distribution P(θ|x) for our model parameters θ given the data x. This is 
encoded in Bayes’ Theorem:
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For complex simulators, the 
likelihood is defined implicitly 

and often intractable. This is 
overcome with simulation-based 
(likelihood-free) inference (see e.g. 

Cranmer et al., 2020).



Simulation-based inference I

● To perform Bayesian inference for any kind of (stochastic) forward model 
(e.g. those specified by simulators), we use the following approach:
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Simulation-based inference II

● Different approaches (all relying on deep learning) exist to learn a probabilis- 
tic association between the simulated data and the underlying parameters. 
These algorithms essentially focus on different pieces of Bayes’ theorem:
○ Neural Posterior Estimation (NPE) (e.g., Papamakarios & Murray, 2016)
○ Neural Likelihood Estimation (NLE) (e.g., Papamakarios et al., 2019)
○ Neural Ratio Estimation (NRE) (e.g., Hermans et al., 2020; Delaunoy et al., 2022)

● All methods exist in sequential form (SNPE, SNLE, SNRE), which adds a fifth 
step to workflow. Instead of sampling from the prior, we adaptively generate 
simulations from the posterior. This typically requires fewer simulations.

We focus on NPE. This allows us to directly learn the posterior 
distribution. In contrast, NLE and NRE need an extra (potentially 
time consuming) MCMC sampling step to construct a posterior.
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Simulation-based inference II

● To perform Bayesian inference for any kind of (stochastic) forward model 
(e.g. those specified by simulators), we use the following approach:
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Neural networks (NNs)

● A neural network is composed of layers, which 
represent stacks of neurons (objects holding a 
single numerical value). Each layer encodes a 
simplified representation of the input data.

● A deep-learning algorithm learns more and 
more about the input as the data is passed 
through successive hidden network layers.

● The Multilayer Perceptron is the simplest set-up 
where input and output are fully connected. In a 
convolutional NN, not all nodes are connected, 
which reduces the number of trainable para- 
meters and allows more flexibility for training.

Vanessa.Graber@rhul.ac.uk 23

Sketch of a very simple 
fully connected neural network.



Neural networks (NNs)

● A neural network is composed of layers, which 
represent stacks of neurons (objects holding a 
single numerical value). Each layer encodes a 
simplified representation of the input data.
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Convolutional and max pooling layers

● Besides fully connected layers, CNNs are composed of two types of filters:

Convolutional filters Max-pooling layers

These filters recognise features, 
such as detecting edges of an 

object in an image.

These filters extract the most 
relevant features, helping to 

speed up the training process.
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SBI for radio pulsars

● With our complex population synthesis simulator, 
we fix the dynamics to a fiducial model and focus 
on the magneto-rotational evolution. 

● From our simulated populations, we generate summary 
statistics: density maps for three surveys in the PP-plane.

● Build on PyTorch package sbi (Tejero-Cantero et al., 2020):

Varying the five 
parameters μP, μB, σP, 

σB and α, we 
simulate 360,000 
synthetic pulsar 

populations over 6 
weeks.
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Posterior results

● We use an ensemble of networks to 
infer on the observed population:

○ Initial B-field parameters are 
narrower than initial P posteriors 
(expected due to degeneracies).

○ Posteriors for late-time evolution 
do not overlap causing bimodality 
(hinting at missing info/physics).
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Graber et al. (2024)



Sequential SBI for radio pulsars 

● We have now implemented a sequential 
workflow (Deistler et al. 2022) that iteratively 
produces simulations as needed.

● This method plus adding radio flux infor- 
mation allows us to infer 7 parameters 
with only 10,000 simulations in a few days.

Vanessa.Graber@rhul.ac.uk
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density shows average flux per bin

Pardo et al. (2025)
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Using neural networks as density estimators allows 

us to learn about neutron star properties in a way 

that has never been possible. This will only get better 

as SKAO will observe many more radio pulsars.
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Summary
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● Key challenges in radio 
astronomy (RFI, large 
data volumes) can lend 
themselves to be solved 
by ML algorithms.

● Using flexible neural 
networks to estimate 
posteriors is an exciting 
new way to learn about 
unknown astrophysics.

● Radio astronomy 
allows a unique view 
into astrophysical 
phenomena otherwise 
hidden from view.

● Simulators in astrono- 
my are very complex, 
making standard 
Bayesian inference 
often impossible.
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